{"title":"评估不熟悉的人:推断的审稿人个性和审稿人的帮助性","authors":"A. Liu, Yilin Li, S. Xu","doi":"10.25300/misq/2021/14375","DOIUrl":null,"url":null,"abstract":"This work examines the question of who is more likely to provide future helpful reviews in the context of online product reviews by synergistically using personality theories and data analytics. It trains a deep learning model to infer a reviewer’s personality traits. This enables analyses to reveal the role of personality traits in review helpfulness among a large population of reviewers. We develop hypotheses on how personality traits are associated with review helpfulness, followed by hypotheses testing that confirms that higher review helpfulness is related to higher openness, conscientiousness, extraversion, and agreeableness and to lower emotional stability. These results suggest the appropriateness of using these five personality traits as inputs for developing a model for predicting future review helpfulness. Based on an ensemble model using supervised classification algorithms, we develop a predictive model and demonstrate its superior performance. Theoretical and practical implications are discussed.","PeriodicalId":18743,"journal":{"name":"MIS Q.","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Assessing the Unacquainted: Inferred Reviewer Personality and Review Helpfulness\",\"authors\":\"A. Liu, Yilin Li, S. Xu\",\"doi\":\"10.25300/misq/2021/14375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work examines the question of who is more likely to provide future helpful reviews in the context of online product reviews by synergistically using personality theories and data analytics. It trains a deep learning model to infer a reviewer’s personality traits. This enables analyses to reveal the role of personality traits in review helpfulness among a large population of reviewers. We develop hypotheses on how personality traits are associated with review helpfulness, followed by hypotheses testing that confirms that higher review helpfulness is related to higher openness, conscientiousness, extraversion, and agreeableness and to lower emotional stability. These results suggest the appropriateness of using these five personality traits as inputs for developing a model for predicting future review helpfulness. Based on an ensemble model using supervised classification algorithms, we develop a predictive model and demonstrate its superior performance. Theoretical and practical implications are discussed.\",\"PeriodicalId\":18743,\"journal\":{\"name\":\"MIS Q.\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MIS Q.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25300/misq/2021/14375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MIS Q.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25300/misq/2021/14375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessing the Unacquainted: Inferred Reviewer Personality and Review Helpfulness
This work examines the question of who is more likely to provide future helpful reviews in the context of online product reviews by synergistically using personality theories and data analytics. It trains a deep learning model to infer a reviewer’s personality traits. This enables analyses to reveal the role of personality traits in review helpfulness among a large population of reviewers. We develop hypotheses on how personality traits are associated with review helpfulness, followed by hypotheses testing that confirms that higher review helpfulness is related to higher openness, conscientiousness, extraversion, and agreeableness and to lower emotional stability. These results suggest the appropriateness of using these five personality traits as inputs for developing a model for predicting future review helpfulness. Based on an ensemble model using supervised classification algorithms, we develop a predictive model and demonstrate its superior performance. Theoretical and practical implications are discussed.