一种新的机器人足球强化学习算法

ORiON Pub Date : 2017-06-16 DOI:10.5784/33-1-542
M. Yoon, J. Bekker, Steve Kroon
{"title":"一种新的机器人足球强化学习算法","authors":"M. Yoon, J. Bekker, Steve Kroon","doi":"10.5784/33-1-542","DOIUrl":null,"url":null,"abstract":"Reinforcement Learning (RL) is a powerful technique to develop intelligent agents in the field of Artificial Intelligence (AI). This paper proposes a new RL algorithm called the Temporal-Difference value iteration algorithm with state-value functions and presents applications of this algorithm to the decision-making problems challenged in the RoboCup Small Size League (SSL) domain. Six scenarios were defined to develop shooting skills for an SSL soccer robot in various situations using the proposed algorithm. Furthermore, an Artificial Neural Network (ANN) model, namely Multi-Layer Perceptron (MLP) was used as a function approximator in each application. The experimental results showed that the proposed RL algorithm had effectively trained the  RL agent to acquire good shooting skills. The RL agent showed  good performance under specified experimental conditions.","PeriodicalId":30587,"journal":{"name":"ORiON","volume":"158 1","pages":"1-20"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"New reinforcement learning algorithm for robot soccer\",\"authors\":\"M. Yoon, J. Bekker, Steve Kroon\",\"doi\":\"10.5784/33-1-542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement Learning (RL) is a powerful technique to develop intelligent agents in the field of Artificial Intelligence (AI). This paper proposes a new RL algorithm called the Temporal-Difference value iteration algorithm with state-value functions and presents applications of this algorithm to the decision-making problems challenged in the RoboCup Small Size League (SSL) domain. Six scenarios were defined to develop shooting skills for an SSL soccer robot in various situations using the proposed algorithm. Furthermore, an Artificial Neural Network (ANN) model, namely Multi-Layer Perceptron (MLP) was used as a function approximator in each application. The experimental results showed that the proposed RL algorithm had effectively trained the  RL agent to acquire good shooting skills. The RL agent showed  good performance under specified experimental conditions.\",\"PeriodicalId\":30587,\"journal\":{\"name\":\"ORiON\",\"volume\":\"158 1\",\"pages\":\"1-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ORiON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5784/33-1-542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ORiON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5784/33-1-542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

强化学习(RL)是人工智能(AI)领域开发智能体的有力技术。本文提出了一种新的强化学习算法——带状态值函数的时差值迭代算法,并介绍了该算法在RoboCup小型联赛(SSL)领域面临的决策问题中的应用。定义了六个场景来使用所提出的算法开发SSL足球机器人在各种情况下的射门技能。此外,在每个应用中使用人工神经网络(ANN)模型,即多层感知器(MLP)作为函数逼近器。实验结果表明,本文提出的RL算法能够有效地训练RL agent获得良好的射击技能。在规定的实验条件下,RL剂表现出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New reinforcement learning algorithm for robot soccer
Reinforcement Learning (RL) is a powerful technique to develop intelligent agents in the field of Artificial Intelligence (AI). This paper proposes a new RL algorithm called the Temporal-Difference value iteration algorithm with state-value functions and presents applications of this algorithm to the decision-making problems challenged in the RoboCup Small Size League (SSL) domain. Six scenarios were defined to develop shooting skills for an SSL soccer robot in various situations using the proposed algorithm. Furthermore, an Artificial Neural Network (ANN) model, namely Multi-Layer Perceptron (MLP) was used as a function approximator in each application. The experimental results showed that the proposed RL algorithm had effectively trained the  RL agent to acquire good shooting skills. The RL agent showed  good performance under specified experimental conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信