{"title":"非等间距数据的最小二乘离散傅立叶分析","authors":"W. Popiński","doi":"10.4064/am2399-6-2020","DOIUrl":null,"url":null,"abstract":". The problem of discrete Fourier analysis of observations at non-equidistant times using the standard set of complex harmonics exp( i 2 πkt ) , t ∈ R , k = 0 , ± 1 , ± 2 , . . . , and the least squares method is studied. The observation model y j = f ( t j )+ η j , j = 1 , . . . , n , is considered for f ∈ L 2 [0 , 1] , where t j ∈ [( j − 1) /n, j/n ) , and η j are correlated complex valued random variables with E η η j = 0 and E η | η j | 2 = σ 2 η < ∞ . Uniqueness and finite sample properties of the observed function Fourier coefficient estimators ˆ c k , k = 0 , ± 1 , . . . , ± m , where m < n/ (8 π ) , obtained by the least squares method, as well as of the corresponding orthogonal projection estimator ˆ f N ( t ) = (cid:80) mk = − m ˆ c k exp( i 2 πkt ) , where N = 2 m + 1 , are examined and compared with those of the standard Discrete Fourier Transform.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On least squares discrete Fourier analysis of unequally spaced data\",\"authors\":\"W. Popiński\",\"doi\":\"10.4064/am2399-6-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The problem of discrete Fourier analysis of observations at non-equidistant times using the standard set of complex harmonics exp( i 2 πkt ) , t ∈ R , k = 0 , ± 1 , ± 2 , . . . , and the least squares method is studied. The observation model y j = f ( t j )+ η j , j = 1 , . . . , n , is considered for f ∈ L 2 [0 , 1] , where t j ∈ [( j − 1) /n, j/n ) , and η j are correlated complex valued random variables with E η η j = 0 and E η | η j | 2 = σ 2 η < ∞ . Uniqueness and finite sample properties of the observed function Fourier coefficient estimators ˆ c k , k = 0 , ± 1 , . . . , ± m , where m < n/ (8 π ) , obtained by the least squares method, as well as of the corresponding orthogonal projection estimator ˆ f N ( t ) = (cid:80) mk = − m ˆ c k exp( i 2 πkt ) , where N = 2 m + 1 , are examined and compared with those of the standard Discrete Fourier Transform.\",\"PeriodicalId\":52313,\"journal\":{\"name\":\"Applicationes Mathematicae\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/am2399-6-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/am2399-6-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
。用复谐波标准集exp(i 2 πkt), t∈R, k = 0,±1,±2,…对非等距时间观测的离散傅立叶分析问题。,并对最小二乘法进行了研究。观测模型y j = f (t j)+ η j, j = 1,…, n,对于f∈l2[0,1],其中t j∈[(j−1)/n, j/n), η j是相关复值随机变量,且E η η j = 0, E η | η j | 2 = σ 2 η <∞。观测函数傅里叶系数估计量的唯一性和有限样本性质:c k, k = 0,±1,…,±m,其中m < n/ (8 π),以及相应的正交投影估计量,n (t) = (cid:80), mk = - m, c k exp(i 2 πkt),其中n = 2 m + 1,检验并与标准离散傅里叶变换进行比较。
On least squares discrete Fourier analysis of unequally spaced data
. The problem of discrete Fourier analysis of observations at non-equidistant times using the standard set of complex harmonics exp( i 2 πkt ) , t ∈ R , k = 0 , ± 1 , ± 2 , . . . , and the least squares method is studied. The observation model y j = f ( t j )+ η j , j = 1 , . . . , n , is considered for f ∈ L 2 [0 , 1] , where t j ∈ [( j − 1) /n, j/n ) , and η j are correlated complex valued random variables with E η η j = 0 and E η | η j | 2 = σ 2 η < ∞ . Uniqueness and finite sample properties of the observed function Fourier coefficient estimators ˆ c k , k = 0 , ± 1 , . . . , ± m , where m < n/ (8 π ) , obtained by the least squares method, as well as of the corresponding orthogonal projection estimator ˆ f N ( t ) = (cid:80) mk = − m ˆ c k exp( i 2 πkt ) , where N = 2 m + 1 , are examined and compared with those of the standard Discrete Fourier Transform.