{"title":"欧拉-克罗内克常数的极值","authors":"Henry H. Kim","doi":"10.2478/udt-2021-0002","DOIUrl":null,"url":null,"abstract":"Abstract In a family of Sn-fields (n ≤ 5), we show that except for a density zero set, the lower and upper bounds of the Euler-Kronecker constants are −(n − 1) log log dK+ O(log log log dK) and loglog dK + O(log log log dK), resp., where dK is the absolute value of the discriminant of a number field K.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"1 1","pages":"41 - 52"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extreme Values of Euler-Kronecker Constants\",\"authors\":\"Henry H. Kim\",\"doi\":\"10.2478/udt-2021-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In a family of Sn-fields (n ≤ 5), we show that except for a density zero set, the lower and upper bounds of the Euler-Kronecker constants are −(n − 1) log log dK+ O(log log log dK) and loglog dK + O(log log log dK), resp., where dK is the absolute value of the discriminant of a number field K.\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"1 1\",\"pages\":\"41 - 52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2021-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2021-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract In a family of Sn-fields (n ≤ 5), we show that except for a density zero set, the lower and upper bounds of the Euler-Kronecker constants are −(n − 1) log log dK+ O(log log log dK) and loglog dK + O(log log log dK), resp., where dK is the absolute value of the discriminant of a number field K.