约束de Bruijn码及其应用

Y. M. Chee, T. Etzion, H. M. Kiah, Van Khu Vu, Eitan Yaakobi
{"title":"约束de Bruijn码及其应用","authors":"Y. M. Chee, T. Etzion, H. M. Kiah, Van Khu Vu, Eitan Yaakobi","doi":"10.1109/ISIT.2019.8849237","DOIUrl":null,"url":null,"abstract":"A sequence s = (s1,⋯,sn) is called a (b, h)-constrained de Bruijn sequence if all substrings of length h starting within b consecutive positions are distinct. A set of (b, h)-constrained de Bruijn sequences is called a (b, h)-constrained de Bruijn code. A (b, h)-constrained de Bruijn sequence was constructed and used as a component of a code correcting multiple limited-shift-errors in racetrack memories. In this work, we show that a (b, h)-constrained de Bruijn code can correct deletions and sticky-insertions and also can determine the locations of these errors in an ℓ-symbol read channel. We also show that it is possible to use sequences from a (b, h)-constrained de Bruijn code to construct a code correcting shift-errors in racetrack memories. As a consequence, we improve the rates on previous known codes.It is shown in this work that a (b, h)-constrained de Bruijn code is a constrained code avoiding a set of specific patterns. Finally, we present some techniques to compute the maximum asymptotic rate and find some efficient encoding/decoding algorithms for (b, h)-constrained de Bruijn codes.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"8 1","pages":"2369-2373"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Constrained de Bruijn Codes and their Applications\",\"authors\":\"Y. M. Chee, T. Etzion, H. M. Kiah, Van Khu Vu, Eitan Yaakobi\",\"doi\":\"10.1109/ISIT.2019.8849237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sequence s = (s1,⋯,sn) is called a (b, h)-constrained de Bruijn sequence if all substrings of length h starting within b consecutive positions are distinct. A set of (b, h)-constrained de Bruijn sequences is called a (b, h)-constrained de Bruijn code. A (b, h)-constrained de Bruijn sequence was constructed and used as a component of a code correcting multiple limited-shift-errors in racetrack memories. In this work, we show that a (b, h)-constrained de Bruijn code can correct deletions and sticky-insertions and also can determine the locations of these errors in an ℓ-symbol read channel. We also show that it is possible to use sequences from a (b, h)-constrained de Bruijn code to construct a code correcting shift-errors in racetrack memories. As a consequence, we improve the rates on previous known codes.It is shown in this work that a (b, h)-constrained de Bruijn code is a constrained code avoiding a set of specific patterns. Finally, we present some techniques to compute the maximum asymptotic rate and find some efficient encoding/decoding algorithms for (b, h)-constrained de Bruijn codes.\",\"PeriodicalId\":6708,\"journal\":{\"name\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"8 1\",\"pages\":\"2369-2373\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2019.8849237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

如果在b个连续位置内开始的长度为h的所有子串是不同的,则序列s = (s1,⋯,sn)称为(b, h)约束的de Bruijn序列。一组(b, h)约束de Bruijn序列称为(b, h)约束de Bruijn码。构造了A (b, h)约束的de Bruijn序列,并将其作为纠错码的组成部分。在这项工作中,我们证明了a (b, h)约束的de Bruijn码可以纠正删除和粘插入,并且还可以确定这些错误在一个r -符号读取通道中的位置。我们还表明,可以使用a (b, h)约束的de Bruijn码序列来构建一个纠正赛道记忆中的移位错误的代码。因此,我们提高了先前已知代码的速率。本文表明,a (b, h)约束de Bruijn码是一种避免一组特定模式的约束码。最后,我们给出了一些计算(b, h)约束de Bruijn码的最大渐近率的技术,并找到了一些有效的编码/解码算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constrained de Bruijn Codes and their Applications
A sequence s = (s1,⋯,sn) is called a (b, h)-constrained de Bruijn sequence if all substrings of length h starting within b consecutive positions are distinct. A set of (b, h)-constrained de Bruijn sequences is called a (b, h)-constrained de Bruijn code. A (b, h)-constrained de Bruijn sequence was constructed and used as a component of a code correcting multiple limited-shift-errors in racetrack memories. In this work, we show that a (b, h)-constrained de Bruijn code can correct deletions and sticky-insertions and also can determine the locations of these errors in an ℓ-symbol read channel. We also show that it is possible to use sequences from a (b, h)-constrained de Bruijn code to construct a code correcting shift-errors in racetrack memories. As a consequence, we improve the rates on previous known codes.It is shown in this work that a (b, h)-constrained de Bruijn code is a constrained code avoiding a set of specific patterns. Finally, we present some techniques to compute the maximum asymptotic rate and find some efficient encoding/decoding algorithms for (b, h)-constrained de Bruijn codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信