模型复杂性和准确性:COVID-19案例研究

IF 2.5 4区 管理学 Q3 MANAGEMENT
Colin Small, J. Bickel
{"title":"模型复杂性和准确性:COVID-19案例研究","authors":"Colin Small, J. Bickel","doi":"10.1287/deca.2022.0457","DOIUrl":null,"url":null,"abstract":"When creating mathematical models for forecasting and decision making, there is a tendency to include more complexity than necessary, in the belief that higher-fidelity models are more accurate than simpler ones. In this paper, we analyze the performance of models that submitted COVID-19 forecasts to the U.S. Centers for Disease Control and Prevention and evaluate them against a simple two-equation model that is specified using simple linear regression. We find that our simple model was comparable in accuracy to highly publicized models and had among the best-calibrated forecasts. This result may be surprising given the complexity of many COVID-19 models and their support by large forecasting teams. However, our result is consistent with the body of research that suggests that simple models perform very well in a variety of settings.","PeriodicalId":46460,"journal":{"name":"Decision Analysis","volume":"155 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Model Complexity and Accuracy: A COVID-19 Case Study\",\"authors\":\"Colin Small, J. Bickel\",\"doi\":\"10.1287/deca.2022.0457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When creating mathematical models for forecasting and decision making, there is a tendency to include more complexity than necessary, in the belief that higher-fidelity models are more accurate than simpler ones. In this paper, we analyze the performance of models that submitted COVID-19 forecasts to the U.S. Centers for Disease Control and Prevention and evaluate them against a simple two-equation model that is specified using simple linear regression. We find that our simple model was comparable in accuracy to highly publicized models and had among the best-calibrated forecasts. This result may be surprising given the complexity of many COVID-19 models and their support by large forecasting teams. However, our result is consistent with the body of research that suggests that simple models perform very well in a variety of settings.\",\"PeriodicalId\":46460,\"journal\":{\"name\":\"Decision Analysis\",\"volume\":\"155 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Analysis\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/deca.2022.0457\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analysis","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/deca.2022.0457","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 3

摘要

在为预测和决策创建数学模型时,人们倾向于包含比必要的更复杂的东西,因为人们相信高保真度的模型比简单的模型更准确。在本文中,我们分析了向美国疾病控制和预防中心提交COVID-19预测的模型的性能,并对使用简单线性回归指定的简单双方程模型进行了评估。我们发现,我们的简单模型在准确性上与广为宣传的模型相当,并且具有最佳校准的预测。考虑到许多COVID-19模型的复杂性以及大型预测团队的支持,这一结果可能令人惊讶。然而,我们的结果与研究主体一致,表明简单模型在各种环境中都表现得很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Complexity and Accuracy: A COVID-19 Case Study
When creating mathematical models for forecasting and decision making, there is a tendency to include more complexity than necessary, in the belief that higher-fidelity models are more accurate than simpler ones. In this paper, we analyze the performance of models that submitted COVID-19 forecasts to the U.S. Centers for Disease Control and Prevention and evaluate them against a simple two-equation model that is specified using simple linear regression. We find that our simple model was comparable in accuracy to highly publicized models and had among the best-calibrated forecasts. This result may be surprising given the complexity of many COVID-19 models and their support by large forecasting teams. However, our result is consistent with the body of research that suggests that simple models perform very well in a variety of settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Decision Analysis
Decision Analysis MANAGEMENT-
CiteScore
3.10
自引率
21.10%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信