金融时间序列预测中神经网络无监督层的比较

Asmaa Mahdi, Tillman Weyde, D. Al-Jumeily
{"title":"金融时间序列预测中神经网络无监督层的比较","authors":"Asmaa Mahdi, Tillman Weyde, D. Al-Jumeily","doi":"10.1109/DeSE.2019.00034","DOIUrl":null,"url":null,"abstract":"In this study, we propose and compare neural network models that use unsupervised layers for the prediction of financial time series. We compare the novel FL-RBM and FL-SMIA-RMB models that integrate a Restricted Boltzmann Machine (RBM) and the self-organizing layer of the Selforganized Multi-Layer Network using the Immune Algorithm (SMIA) with the FL-SMIA network and a standard MLP. We aim to investigate the performance of unsupervised learning in comparison to purely supervised and other mixed models. The FL-RBM model combines the products of raw input features (the Functional Link, FL), with the Restricted Boltzmann Machine RBM as a self-organizing first hidden layer, while the FL-SMIA model uses the Immune Algorithm on the first layer. The FLSMIA- RBM model, combines both self-organizing layers with a back-propagation network. The results show that the FL-SMIA model outperforms the FL-RBM, the FL-SMIA-RBM and the MLP as measured by Annualized Return (AR) in one-day-ahead prediction on exchange rates time series. In terms of volatility, the FL-SMIA and MLP perform similarly.","PeriodicalId":6632,"journal":{"name":"2019 12th International Conference on Developments in eSystems Engineering (DeSE)","volume":"24 1","pages":"134-139"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Unsupervised Layers in Neural Networks for Financial Time Series Prediction\",\"authors\":\"Asmaa Mahdi, Tillman Weyde, D. Al-Jumeily\",\"doi\":\"10.1109/DeSE.2019.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose and compare neural network models that use unsupervised layers for the prediction of financial time series. We compare the novel FL-RBM and FL-SMIA-RMB models that integrate a Restricted Boltzmann Machine (RBM) and the self-organizing layer of the Selforganized Multi-Layer Network using the Immune Algorithm (SMIA) with the FL-SMIA network and a standard MLP. We aim to investigate the performance of unsupervised learning in comparison to purely supervised and other mixed models. The FL-RBM model combines the products of raw input features (the Functional Link, FL), with the Restricted Boltzmann Machine RBM as a self-organizing first hidden layer, while the FL-SMIA model uses the Immune Algorithm on the first layer. The FLSMIA- RBM model, combines both self-organizing layers with a back-propagation network. The results show that the FL-SMIA model outperforms the FL-RBM, the FL-SMIA-RBM and the MLP as measured by Annualized Return (AR) in one-day-ahead prediction on exchange rates time series. In terms of volatility, the FL-SMIA and MLP perform similarly.\",\"PeriodicalId\":6632,\"journal\":{\"name\":\"2019 12th International Conference on Developments in eSystems Engineering (DeSE)\",\"volume\":\"24 1\",\"pages\":\"134-139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 12th International Conference on Developments in eSystems Engineering (DeSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DeSE.2019.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th International Conference on Developments in eSystems Engineering (DeSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DeSE.2019.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出并比较了使用无监督层预测金融时间序列的神经网络模型。我们将基于免疫算法(SMIA)的自组织多层网络的限制玻尔兹曼机(RBM)和自组织层与FL-SMIA网络和标准MLP相结合的新颖FL-RBM和FL-SMIA- rmb模型进行了比较。我们的目标是研究无监督学习与纯监督和其他混合模型的性能。FL-RBM模型将原始输入特征(Functional Link, FL)的产物与受限玻尔兹曼机(Restricted Boltzmann Machine RBM)结合起来作为自组织的第一隐藏层,而FL- smia模型在第一层使用免疫算法。FLSMIA- RBM模型结合了两个自组织层和一个反向传播网络。结果表明,FL-SMIA模型在汇率时间序列的1天前预测中优于FL-RBM、FL-SMIA- rbm和基于年化收益率(AR)的MLP。就波动性而言,FL-SMIA和MLP的表现相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing Unsupervised Layers in Neural Networks for Financial Time Series Prediction
In this study, we propose and compare neural network models that use unsupervised layers for the prediction of financial time series. We compare the novel FL-RBM and FL-SMIA-RMB models that integrate a Restricted Boltzmann Machine (RBM) and the self-organizing layer of the Selforganized Multi-Layer Network using the Immune Algorithm (SMIA) with the FL-SMIA network and a standard MLP. We aim to investigate the performance of unsupervised learning in comparison to purely supervised and other mixed models. The FL-RBM model combines the products of raw input features (the Functional Link, FL), with the Restricted Boltzmann Machine RBM as a self-organizing first hidden layer, while the FL-SMIA model uses the Immune Algorithm on the first layer. The FLSMIA- RBM model, combines both self-organizing layers with a back-propagation network. The results show that the FL-SMIA model outperforms the FL-RBM, the FL-SMIA-RBM and the MLP as measured by Annualized Return (AR) in one-day-ahead prediction on exchange rates time series. In terms of volatility, the FL-SMIA and MLP perform similarly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信