Ghaidaa Mohammad Esber, Mothanna Alkubeily, Samer Sulaiman Ghaidaa Mohammad Esber, Mothanna Alkubeily, Samer
{"title":"设计用于减少在无线电通信系统中的频率:设计一个虚拟软件平台,用于在中央处理器一级的无线电传感器网络中建立合同模。","authors":"Ghaidaa Mohammad Esber, Mothanna Alkubeily, Samer Sulaiman Ghaidaa Mohammad Esber, Mothanna Alkubeily, Samer ","doi":"10.26389/ajsrp.e120621","DOIUrl":null,"url":null,"abstract":"Wireless sensor network simulation programs provide representation for an actual system, without needing to deploy real testbed which is highly constrained by the available budget, and the direct operations inside physical layer in most of these programs are hidden and work implicitly. This is what motivated us to build a kernel for a virtual simulation platform to be able to simulate protocol operations and algorithms at the node processing unit level, The proposed system aims to observe the execution of operations at the low level of the wireless sensor physical infrastructure with the ability to modify at this level. That give the improvers of wireless sensor nodes the ability to test their ideas without needing to use physical environment. We have built the functionality operations which are related to the platform kernel at several stages. We defined (as a first step) the essential operations inside a virtual microprocessor that uses a partial set pf MIPS instructions, and built the kernel of minimized virtual WSN simulator depending on the proposed microprocessor, that means we can add any number of nodes inside the GUI of the WSN simulator kernel, and these nodes use the proposed virtual microprocessor . Then we improved this platform by adding the instruction set of a real microprocessor that is used in wireless sensor network nodes. Finally, (and to ease and simplify the interaction operation between program GUI of the platform kernel and the user), we have built simplified compiler that allows user to deal with microprocessor GUI inside each node, and to clarify protocol and algorithm operations by a set of orders and functions without needing to deal with low level language (Assembly language) in a direct way. The simulation results have presented high flexibility and performance to this platform in observing the operation sequence inside wireless sensor nodes at assembly level, in addition to focus on some parameters that are related to microprocessor inside each node.","PeriodicalId":15747,"journal":{"name":"Journal of engineering sciences and information technology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a Virtual Platform for Modeling Nodes in Wireless Sensor Networks at the Central Processing Unit Level: تصميم منصة برمجية افتراضية لنمذجة العقد ضمن شبكات الحساسات اللاسلكية على مستوى وحدة المعالجة المركزية\",\"authors\":\"Ghaidaa Mohammad Esber, Mothanna Alkubeily, Samer Sulaiman Ghaidaa Mohammad Esber, Mothanna Alkubeily, Samer \",\"doi\":\"10.26389/ajsrp.e120621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor network simulation programs provide representation for an actual system, without needing to deploy real testbed which is highly constrained by the available budget, and the direct operations inside physical layer in most of these programs are hidden and work implicitly. This is what motivated us to build a kernel for a virtual simulation platform to be able to simulate protocol operations and algorithms at the node processing unit level, The proposed system aims to observe the execution of operations at the low level of the wireless sensor physical infrastructure with the ability to modify at this level. That give the improvers of wireless sensor nodes the ability to test their ideas without needing to use physical environment. We have built the functionality operations which are related to the platform kernel at several stages. We defined (as a first step) the essential operations inside a virtual microprocessor that uses a partial set pf MIPS instructions, and built the kernel of minimized virtual WSN simulator depending on the proposed microprocessor, that means we can add any number of nodes inside the GUI of the WSN simulator kernel, and these nodes use the proposed virtual microprocessor . Then we improved this platform by adding the instruction set of a real microprocessor that is used in wireless sensor network nodes. Finally, (and to ease and simplify the interaction operation between program GUI of the platform kernel and the user), we have built simplified compiler that allows user to deal with microprocessor GUI inside each node, and to clarify protocol and algorithm operations by a set of orders and functions without needing to deal with low level language (Assembly language) in a direct way. The simulation results have presented high flexibility and performance to this platform in observing the operation sequence inside wireless sensor nodes at assembly level, in addition to focus on some parameters that are related to microprocessor inside each node.\",\"PeriodicalId\":15747,\"journal\":{\"name\":\"Journal of engineering sciences and information technology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of engineering sciences and information technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26389/ajsrp.e120621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering sciences and information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26389/ajsrp.e120621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing a Virtual Platform for Modeling Nodes in Wireless Sensor Networks at the Central Processing Unit Level: تصميم منصة برمجية افتراضية لنمذجة العقد ضمن شبكات الحساسات اللاسلكية على مستوى وحدة المعالجة المركزية
Wireless sensor network simulation programs provide representation for an actual system, without needing to deploy real testbed which is highly constrained by the available budget, and the direct operations inside physical layer in most of these programs are hidden and work implicitly. This is what motivated us to build a kernel for a virtual simulation platform to be able to simulate protocol operations and algorithms at the node processing unit level, The proposed system aims to observe the execution of operations at the low level of the wireless sensor physical infrastructure with the ability to modify at this level. That give the improvers of wireless sensor nodes the ability to test their ideas without needing to use physical environment. We have built the functionality operations which are related to the platform kernel at several stages. We defined (as a first step) the essential operations inside a virtual microprocessor that uses a partial set pf MIPS instructions, and built the kernel of minimized virtual WSN simulator depending on the proposed microprocessor, that means we can add any number of nodes inside the GUI of the WSN simulator kernel, and these nodes use the proposed virtual microprocessor . Then we improved this platform by adding the instruction set of a real microprocessor that is used in wireless sensor network nodes. Finally, (and to ease and simplify the interaction operation between program GUI of the platform kernel and the user), we have built simplified compiler that allows user to deal with microprocessor GUI inside each node, and to clarify protocol and algorithm operations by a set of orders and functions without needing to deal with low level language (Assembly language) in a direct way. The simulation results have presented high flexibility and performance to this platform in observing the operation sequence inside wireless sensor nodes at assembly level, in addition to focus on some parameters that are related to microprocessor inside each node.