{"title":"鞅的直径估计","authors":"A. Osȩkowski","doi":"10.1080/17442508.2014.939977","DOIUrl":null,"url":null,"abstract":"We establish sharp weak type and logarithmic estimates for the diameter of the stopped Brownian motion. Then, using standard embedding theorems, we extend the results to the case of general real-valued continuous-path martingales. The proof rests on finding of the solutions to the corresponding three-dimensional optimal stopping problems.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimates for the diameter of a martingale\",\"authors\":\"A. Osȩkowski\",\"doi\":\"10.1080/17442508.2014.939977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish sharp weak type and logarithmic estimates for the diameter of the stopped Brownian motion. Then, using standard embedding theorems, we extend the results to the case of general real-valued continuous-path martingales. The proof rests on finding of the solutions to the corresponding three-dimensional optimal stopping problems.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2014.939977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2014.939977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We establish sharp weak type and logarithmic estimates for the diameter of the stopped Brownian motion. Then, using standard embedding theorems, we extend the results to the case of general real-valued continuous-path martingales. The proof rests on finding of the solutions to the corresponding three-dimensional optimal stopping problems.