Maija-Liisa Salonen , Riitta Parviainen , Liisa Kaarina Simola
{"title":"氮源对颠茄悬浮培养谷氨酸脱氢酶和谷氨酰胺合成酶活性的影响。","authors":"Maija-Liisa Salonen , Riitta Parviainen , Liisa Kaarina Simola","doi":"10.1016/S0015-3796(11)80124-1","DOIUrl":null,"url":null,"abstract":"<div><p>Development of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) activity, as well as growth, were studied in dark-grown suspension cultures of <em>Atropa belladonna</em> initiated from root callus. The nutrient media contained NaNO<sub>3</sub> (15 mM) or NH<sub>4</sub>NO<sub>3</sub> (7.5 mM). In order to study the effect of early precursors of tropane alkaloids, the cultures were supplemented with proline or ornithine (2.5 mM) during the rapid growth phase on day 10. Growth was accelerated by NH<sub>4</sub>NO<sub>3</sub> (days 0-13), but higher fresh and dry weights were obtained at the end of the growth period (day 30) with NaNO<sub>3</sub>. Ornithine temporarily retarded growth in NaNO<sub>3</sub> (days 13, 16). GDH and GS were assayed on days 9, 13 and 16. Considerable GS levels were found in all cultures. However, GS activity in NaNO<sub>3</sub> was markedly higher than in NH<sub>4</sub>NO<sub>3</sub>. In contrast, GDH activity was distinctly higher in NH<sub>4</sub>NO<sub>3</sub> than in NaNO<sub>3</sub>. Proline and ornithine were effectively metabolized by the suspension cultures, and only transitional accumulation of these amino acids in the cells was observed after amino acid supplementation. GDH and GS were hardly affected by proline, whereas ornithine enhanced GDH activity in the NaNO<sub>3</sub>-grown cultures and decreased GS in both nutrient media.</p></div>","PeriodicalId":8798,"journal":{"name":"Biochemie und Physiologie der Pflanzen","volume":"188 5","pages":"Pages 283-294"},"PeriodicalIF":0.0000,"publicationDate":"1992-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0015-3796(11)80124-1","citationCount":"2","resultStr":"{\"title\":\"Effects of Nitrogen Sources on Glutamate Dehydrogenase and Glutamine Synthetase Activity in Suspension Cultures of Atropa belladonna L.\",\"authors\":\"Maija-Liisa Salonen , Riitta Parviainen , Liisa Kaarina Simola\",\"doi\":\"10.1016/S0015-3796(11)80124-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Development of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) activity, as well as growth, were studied in dark-grown suspension cultures of <em>Atropa belladonna</em> initiated from root callus. The nutrient media contained NaNO<sub>3</sub> (15 mM) or NH<sub>4</sub>NO<sub>3</sub> (7.5 mM). In order to study the effect of early precursors of tropane alkaloids, the cultures were supplemented with proline or ornithine (2.5 mM) during the rapid growth phase on day 10. Growth was accelerated by NH<sub>4</sub>NO<sub>3</sub> (days 0-13), but higher fresh and dry weights were obtained at the end of the growth period (day 30) with NaNO<sub>3</sub>. Ornithine temporarily retarded growth in NaNO<sub>3</sub> (days 13, 16). GDH and GS were assayed on days 9, 13 and 16. Considerable GS levels were found in all cultures. However, GS activity in NaNO<sub>3</sub> was markedly higher than in NH<sub>4</sub>NO<sub>3</sub>. In contrast, GDH activity was distinctly higher in NH<sub>4</sub>NO<sub>3</sub> than in NaNO<sub>3</sub>. Proline and ornithine were effectively metabolized by the suspension cultures, and only transitional accumulation of these amino acids in the cells was observed after amino acid supplementation. GDH and GS were hardly affected by proline, whereas ornithine enhanced GDH activity in the NaNO<sub>3</sub>-grown cultures and decreased GS in both nutrient media.</p></div>\",\"PeriodicalId\":8798,\"journal\":{\"name\":\"Biochemie und Physiologie der Pflanzen\",\"volume\":\"188 5\",\"pages\":\"Pages 283-294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0015-3796(11)80124-1\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemie und Physiologie der Pflanzen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0015379611801241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemie und Physiologie der Pflanzen","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0015379611801241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Nitrogen Sources on Glutamate Dehydrogenase and Glutamine Synthetase Activity in Suspension Cultures of Atropa belladonna L.
Development of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) activity, as well as growth, were studied in dark-grown suspension cultures of Atropa belladonna initiated from root callus. The nutrient media contained NaNO3 (15 mM) or NH4NO3 (7.5 mM). In order to study the effect of early precursors of tropane alkaloids, the cultures were supplemented with proline or ornithine (2.5 mM) during the rapid growth phase on day 10. Growth was accelerated by NH4NO3 (days 0-13), but higher fresh and dry weights were obtained at the end of the growth period (day 30) with NaNO3. Ornithine temporarily retarded growth in NaNO3 (days 13, 16). GDH and GS were assayed on days 9, 13 and 16. Considerable GS levels were found in all cultures. However, GS activity in NaNO3 was markedly higher than in NH4NO3. In contrast, GDH activity was distinctly higher in NH4NO3 than in NaNO3. Proline and ornithine were effectively metabolized by the suspension cultures, and only transitional accumulation of these amino acids in the cells was observed after amino acid supplementation. GDH and GS were hardly affected by proline, whereas ornithine enhanced GDH activity in the NaNO3-grown cultures and decreased GS in both nutrient media.