基于EM算法的流向量预测

Tarem Ahmed
{"title":"基于EM算法的流向量预测","authors":"Tarem Ahmed","doi":"10.1109/ICC.2010.5501747","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of predicting the number, length and distribution of IP traffic flows some time into the future, based upon packets collected in the present. Two versions of the Expectation-Maximization (EM) algorithm are used to predict the mean flow length and complete flow distributions for subsequent timesteps. A model is first used to represent the histogram of flows corresponding to any given time interval, and the EM algorithms are then used to estimate the parameters of the model. The proposed algorithms are tested on a large number of commonly-available data traces and both show high prediction accuracy.","PeriodicalId":6405,"journal":{"name":"2010 IEEE International Conference on Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Flow Vector Prediction Using EM Algorithms\",\"authors\":\"Tarem Ahmed\",\"doi\":\"10.1109/ICC.2010.5501747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of predicting the number, length and distribution of IP traffic flows some time into the future, based upon packets collected in the present. Two versions of the Expectation-Maximization (EM) algorithm are used to predict the mean flow length and complete flow distributions for subsequent timesteps. A model is first used to represent the histogram of flows corresponding to any given time interval, and the EM algorithms are then used to estimate the parameters of the model. The proposed algorithms are tested on a large number of commonly-available data traces and both show high prediction accuracy.\",\"PeriodicalId\":6405,\"journal\":{\"name\":\"2010 IEEE International Conference on Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.2010.5501747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2010.5501747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文考虑了基于当前收集的数据包来预测未来某个时间IP流量的数量、长度和分布的问题。两种版本的期望最大化(EM)算法用于预测后续时间步长的平均流长度和完整的流量分布。首先使用模型来表示对应于任何给定时间间隔的流的直方图,然后使用EM算法来估计模型的参数。本文提出的算法在大量常用数据轨迹上进行了测试,均显示出较高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow Vector Prediction Using EM Algorithms
This paper considers the problem of predicting the number, length and distribution of IP traffic flows some time into the future, based upon packets collected in the present. Two versions of the Expectation-Maximization (EM) algorithm are used to predict the mean flow length and complete flow distributions for subsequent timesteps. A model is first used to represent the histogram of flows corresponding to any given time interval, and the EM algorithms are then used to estimate the parameters of the model. The proposed algorithms are tested on a large number of commonly-available data traces and both show high prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信