加权估计的蒙特卡罗方法计算的高矩的附加输运特性的倍增粒子

A.V. Lappa
{"title":"加权估计的蒙特卡罗方法计算的高矩的附加输运特性的倍增粒子","authors":"A.V. Lappa","doi":"10.1016/0041-5553(90)90011-G","DOIUrl":null,"url":null,"abstract":"<div><p>A closed Integral representation is given for a moment of an arbitrary order of an arbitrary additive stochastic characteristic of a cascade process involving the transport of particles in a substance. An unbiased non-simulation estimate of the Monte-Carlo method is proposed for calculating such moments on the trajectories of a branching Markov process with discrete time. An example of the efficient use of the estimate is given.</p></div>","PeriodicalId":101271,"journal":{"name":"USSR Computational Mathematics and Mathematical Physics","volume":"30 1","pages":"Pages 91-100"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0041-5553(90)90011-G","citationCount":"3","resultStr":"{\"title\":\"Weighted estimate of the Monte-Carlo method for calculating the higher moments of the additive transport characteristics of multiplying particles\",\"authors\":\"A.V. Lappa\",\"doi\":\"10.1016/0041-5553(90)90011-G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A closed Integral representation is given for a moment of an arbitrary order of an arbitrary additive stochastic characteristic of a cascade process involving the transport of particles in a substance. An unbiased non-simulation estimate of the Monte-Carlo method is proposed for calculating such moments on the trajectories of a branching Markov process with discrete time. An example of the efficient use of the estimate is given.</p></div>\",\"PeriodicalId\":101271,\"journal\":{\"name\":\"USSR Computational Mathematics and Mathematical Physics\",\"volume\":\"30 1\",\"pages\":\"Pages 91-100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0041-5553(90)90011-G\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"USSR Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/004155539090011G\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"USSR Computational Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/004155539090011G","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

给出了涉及粒子在物质中输运的级联过程的任意加性随机特性的任意阶矩的闭积分表示。提出了一种计算离散时间分支马尔可夫过程轨迹上矩的蒙特卡罗方法的无偏非模拟估计。给出了一个有效利用该估计的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted estimate of the Monte-Carlo method for calculating the higher moments of the additive transport characteristics of multiplying particles

A closed Integral representation is given for a moment of an arbitrary order of an arbitrary additive stochastic characteristic of a cascade process involving the transport of particles in a substance. An unbiased non-simulation estimate of the Monte-Carlo method is proposed for calculating such moments on the trajectories of a branching Markov process with discrete time. An example of the efficient use of the estimate is given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信