{"title":"Cayley树上两态Hard-Core模型的一类新的Gibbs测度","authors":"R. Khakimov, M. T. Makhammadaliev, F. Haydarov","doi":"10.1142/s0219025723500248","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a Hard-Core $(HC)$ model with two spin values on Cayley trees. The conception of alternative Gibbs measure is introduced and translational invariance conditions for alternative Gibbs measures are found. Also, we show that the existence of alternative Gibbs measures which are not translation-invariant. In addition, we study free energy of the model.","PeriodicalId":50366,"journal":{"name":"Infinite Dimensional Analysis Quantum Probability and Related Topics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New class of Gibbs measures for two state Hard-Core model on a Cayley tree\",\"authors\":\"R. Khakimov, M. T. Makhammadaliev, F. Haydarov\",\"doi\":\"10.1142/s0219025723500248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a Hard-Core $(HC)$ model with two spin values on Cayley trees. The conception of alternative Gibbs measure is introduced and translational invariance conditions for alternative Gibbs measures are found. Also, we show that the existence of alternative Gibbs measures which are not translation-invariant. In addition, we study free energy of the model.\",\"PeriodicalId\":50366,\"journal\":{\"name\":\"Infinite Dimensional Analysis Quantum Probability and Related Topics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infinite Dimensional Analysis Quantum Probability and Related Topics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025723500248\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinite Dimensional Analysis Quantum Probability and Related Topics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025723500248","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
New class of Gibbs measures for two state Hard-Core model on a Cayley tree
In this paper, we consider a Hard-Core $(HC)$ model with two spin values on Cayley trees. The conception of alternative Gibbs measure is introduced and translational invariance conditions for alternative Gibbs measures are found. Also, we show that the existence of alternative Gibbs measures which are not translation-invariant. In addition, we study free energy of the model.
期刊介绍:
In the past few years the fields of infinite dimensional analysis and quantum probability have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. The number of first-class papers in these fields has grown at the same rate. This is currently the only journal which is devoted to these fields.
It constitutes an essential and central point of reference for the large number of mathematicians, mathematical physicists and other scientists who have been drawn into these areas. Both fields have strong interdisciplinary nature, with deep connection to, for example, classical probability, stochastic analysis, mathematical physics, operator algebras, irreversibility, ergodic theory and dynamical systems, quantum groups, classical and quantum stochastic geometry, quantum chaos, Dirichlet forms, harmonic analysis, quantum measurement, quantum computer, etc. The journal reflects this interdisciplinarity and welcomes high quality papers in all such related fields, particularly those which reveal connections with the main fields of this journal.