{"title":"一种新的多视图数据聚类共识和互补信息学习方法","authors":"Khanh Luong, R. Nayak","doi":"10.1109/ICDE48307.2020.00080","DOIUrl":null,"url":null,"abstract":"Effective methods are required to be developed that can deal with the multi-faceted nature of the multi-view data. We design a factorization-based loss function-based method to simultaneously learn two components encoding the consensus and complementary information present in multi-view data by using the Coupled Matrix Factorization (CMF) and Non-negative Matrix Factorization (NMF). We propose a novel optimal manifold for multi-view data which is the most consensed manifold embedded in the high-dimensional multi-view data. A new complementary enhancing term is added in the loss function to enhance the complementary information inherent in each view. An extensive experiment with diverse datasets, benchmarking the state-of-the-art multi-view clustering methods, has demonstrated the effectiveness of the proposed method in obtaining accurate clustering solution.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"6 1","pages":"865-876"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A Novel Approach to Learning Consensus and Complementary Information for Multi-View Data Clustering\",\"authors\":\"Khanh Luong, R. Nayak\",\"doi\":\"10.1109/ICDE48307.2020.00080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective methods are required to be developed that can deal with the multi-faceted nature of the multi-view data. We design a factorization-based loss function-based method to simultaneously learn two components encoding the consensus and complementary information present in multi-view data by using the Coupled Matrix Factorization (CMF) and Non-negative Matrix Factorization (NMF). We propose a novel optimal manifold for multi-view data which is the most consensed manifold embedded in the high-dimensional multi-view data. A new complementary enhancing term is added in the loss function to enhance the complementary information inherent in each view. An extensive experiment with diverse datasets, benchmarking the state-of-the-art multi-view clustering methods, has demonstrated the effectiveness of the proposed method in obtaining accurate clustering solution.\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"6 1\",\"pages\":\"865-876\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Approach to Learning Consensus and Complementary Information for Multi-View Data Clustering
Effective methods are required to be developed that can deal with the multi-faceted nature of the multi-view data. We design a factorization-based loss function-based method to simultaneously learn two components encoding the consensus and complementary information present in multi-view data by using the Coupled Matrix Factorization (CMF) and Non-negative Matrix Factorization (NMF). We propose a novel optimal manifold for multi-view data which is the most consensed manifold embedded in the high-dimensional multi-view data. A new complementary enhancing term is added in the loss function to enhance the complementary information inherent in each view. An extensive experiment with diverse datasets, benchmarking the state-of-the-art multi-view clustering methods, has demonstrated the effectiveness of the proposed method in obtaining accurate clustering solution.