关于进形螺线管的一个表征定理

G. Feldman
{"title":"关于进形螺线管的一个表征定理","authors":"G. Feldman","doi":"10.31857/s0869-56524893227-231","DOIUrl":null,"url":null,"abstract":"According to the Heyde theorem the Gaussian distribution on the real line is characterized by the symmetry of the conditional distribution of one linear form of independent random variables given the other. We prove an analogue of this theorem for linear forms of two independent random variables taking values in an -adic solenoid containing no elements of order 2. Coefficients of the linear forms are topological automorphisms of the -adic solenoid.","PeriodicalId":24047,"journal":{"name":"Доклады Академии наук","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a characterization theorem on a-adic solenoids\",\"authors\":\"G. Feldman\",\"doi\":\"10.31857/s0869-56524893227-231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the Heyde theorem the Gaussian distribution on the real line is characterized by the symmetry of the conditional distribution of one linear form of independent random variables given the other. We prove an analogue of this theorem for linear forms of two independent random variables taking values in an -adic solenoid containing no elements of order 2. Coefficients of the linear forms are topological automorphisms of the -adic solenoid.\",\"PeriodicalId\":24047,\"journal\":{\"name\":\"Доклады Академии наук\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Доклады Академии наук\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31857/s0869-56524893227-231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Доклады Академии наук","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/s0869-56524893227-231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据Heyde定理,实线上的高斯分布具有独立随机变量的一种线性形式给定另一种线性形式的条件分布的对称性。我们证明了两个独立随机变量的线性形式在不含2阶元素的进样螺线管中取值的类似定理。线性形式的系数是可变螺线管的拓扑自同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a characterization theorem on a-adic solenoids
According to the Heyde theorem the Gaussian distribution on the real line is characterized by the symmetry of the conditional distribution of one linear form of independent random variables given the other. We prove an analogue of this theorem for linear forms of two independent random variables taking values in an -adic solenoid containing no elements of order 2. Coefficients of the linear forms are topological automorphisms of the -adic solenoid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信