Pasika Ranaweera, D. Alahakoon, K. S. S. Prabhashwara, A. Lakmal
{"title":"输电线路自动检测与故障检测系统","authors":"Pasika Ranaweera, D. Alahakoon, K. S. S. Prabhashwara, A. Lakmal","doi":"10.1109/MERCON.2018.8421900","DOIUrl":null,"url":null,"abstract":"Power transmission network is the most critical part of a power system due to its connectivity with generation and distribution stations. Though it is a riskier employment to carry out the routine inspections of the transmission lines manually, the task of inspection is imperative to the continuous operation of the power system. However, the new trend of transmission line inspection is based on extracted details of the lines by means of Remotely Operated Vehicles (ROVs) traversing through them. This paper proposes a method being tested by a prototype for traversing alone the transmission conductor, inspecting the line through real time video streaming, detecting faults and pinpointing them through Geo Tagging. Automated transmission line inspection and fault detection is proposed to carry out through image processing and sensory data acquisition. Radio Frequency (RF) technology is the main communication mechanism between the operator and the ROV. This technology will expand the remotely operating distance of the ROV. Furthermore, a mechanism was developed to enable the robot to cross over from one span to another in the transmission network which include suspension type insulators.","PeriodicalId":6603,"journal":{"name":"2018 Moratuwa Engineering Research Conference (MERCon)","volume":"13 1","pages":"402-407"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Autonomous Transmission Line Inspection and Fault Detection System\",\"authors\":\"Pasika Ranaweera, D. Alahakoon, K. S. S. Prabhashwara, A. Lakmal\",\"doi\":\"10.1109/MERCON.2018.8421900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power transmission network is the most critical part of a power system due to its connectivity with generation and distribution stations. Though it is a riskier employment to carry out the routine inspections of the transmission lines manually, the task of inspection is imperative to the continuous operation of the power system. However, the new trend of transmission line inspection is based on extracted details of the lines by means of Remotely Operated Vehicles (ROVs) traversing through them. This paper proposes a method being tested by a prototype for traversing alone the transmission conductor, inspecting the line through real time video streaming, detecting faults and pinpointing them through Geo Tagging. Automated transmission line inspection and fault detection is proposed to carry out through image processing and sensory data acquisition. Radio Frequency (RF) technology is the main communication mechanism between the operator and the ROV. This technology will expand the remotely operating distance of the ROV. Furthermore, a mechanism was developed to enable the robot to cross over from one span to another in the transmission network which include suspension type insulators.\",\"PeriodicalId\":6603,\"journal\":{\"name\":\"2018 Moratuwa Engineering Research Conference (MERCon)\",\"volume\":\"13 1\",\"pages\":\"402-407\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Moratuwa Engineering Research Conference (MERCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MERCON.2018.8421900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCON.2018.8421900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Autonomous Transmission Line Inspection and Fault Detection System
Power transmission network is the most critical part of a power system due to its connectivity with generation and distribution stations. Though it is a riskier employment to carry out the routine inspections of the transmission lines manually, the task of inspection is imperative to the continuous operation of the power system. However, the new trend of transmission line inspection is based on extracted details of the lines by means of Remotely Operated Vehicles (ROVs) traversing through them. This paper proposes a method being tested by a prototype for traversing alone the transmission conductor, inspecting the line through real time video streaming, detecting faults and pinpointing them through Geo Tagging. Automated transmission line inspection and fault detection is proposed to carry out through image processing and sensory data acquisition. Radio Frequency (RF) technology is the main communication mechanism between the operator and the ROV. This technology will expand the remotely operating distance of the ROV. Furthermore, a mechanism was developed to enable the robot to cross over from one span to another in the transmission network which include suspension type insulators.