Jorge Manuel Revilla-Chávez, M. A. de Moraes, Mack Henry Pinchi-Ramirez, A. Sebbenn
{"title":"乌卡亚利Aguaytia河流域三种环境下瓜祖马(Guazuma crinita)后代的生产力、适应性和稳定性测试Perú","authors":"Jorge Manuel Revilla-Chávez, M. A. de Moraes, Mack Henry Pinchi-Ramirez, A. Sebbenn","doi":"10.2478/sg-2022-0009","DOIUrl":null,"url":null,"abstract":"Abstract Guazuma crinita is a fast-growing tree with potential for use in agroforestry systems, due to its rapid wood production, which can contribute significantly to the livelihoods of small-scale farmers in the Peruvian Amazon. However, indiscriminate logging due to high demand is leading to the disappearance of natural forests. As such, the International Council for Research in Agroforestry (ICRAF) began a domestication program to reduce pressure on natural populations of the species. The objective of the present study was to use analyses of genetic parameters, adaptability (PRVG), productivity (MHPRVG), and stability (MHVG), to select G. crinita genotypes from a three-year-old progeny test established in the Aguaytía River Basin, in Ucayali, Peru. The test was established in three different sites, with three blocks, 200 progeny per block, and two individuals per plot. The measured traits were diameter at breast height (DBH), total height (H), and total aerial biomass (B). Significant differences in traits between progenies were detected, but with no genotype x environment interaction (GxE). However, the genotypic correlation among sites was important (> 0.702), suggesting that genetic improvement is possible by selecting the same progeny across sites. The mean heritability among progenies was moderate for all traits (0.34–0.369) and selective precision through combined site analysis was relatively high (0.583–0.608). Based on selection for DBH through combined analysis, MHVG, PRVG, and MHPRVG, 50 superior progenies (25.9 %) were identified for all environments. These should be prioritized in breeding programs as they can offer stable genetic variability for future selection cycles.","PeriodicalId":21834,"journal":{"name":"Silvae Genetica","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Productivity, adaptability, and stability in Guazuma crinita progeny tests across three environments in the Aguaytia River Basin, Ucayali, Perú\",\"authors\":\"Jorge Manuel Revilla-Chávez, M. A. de Moraes, Mack Henry Pinchi-Ramirez, A. Sebbenn\",\"doi\":\"10.2478/sg-2022-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Guazuma crinita is a fast-growing tree with potential for use in agroforestry systems, due to its rapid wood production, which can contribute significantly to the livelihoods of small-scale farmers in the Peruvian Amazon. However, indiscriminate logging due to high demand is leading to the disappearance of natural forests. As such, the International Council for Research in Agroforestry (ICRAF) began a domestication program to reduce pressure on natural populations of the species. The objective of the present study was to use analyses of genetic parameters, adaptability (PRVG), productivity (MHPRVG), and stability (MHVG), to select G. crinita genotypes from a three-year-old progeny test established in the Aguaytía River Basin, in Ucayali, Peru. The test was established in three different sites, with three blocks, 200 progeny per block, and two individuals per plot. The measured traits were diameter at breast height (DBH), total height (H), and total aerial biomass (B). Significant differences in traits between progenies were detected, but with no genotype x environment interaction (GxE). However, the genotypic correlation among sites was important (> 0.702), suggesting that genetic improvement is possible by selecting the same progeny across sites. The mean heritability among progenies was moderate for all traits (0.34–0.369) and selective precision through combined site analysis was relatively high (0.583–0.608). Based on selection for DBH through combined analysis, MHVG, PRVG, and MHPRVG, 50 superior progenies (25.9 %) were identified for all environments. These should be prioritized in breeding programs as they can offer stable genetic variability for future selection cycles.\",\"PeriodicalId\":21834,\"journal\":{\"name\":\"Silvae Genetica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silvae Genetica\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2478/sg-2022-0009\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silvae Genetica","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2478/sg-2022-0009","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
Productivity, adaptability, and stability in Guazuma crinita progeny tests across three environments in the Aguaytia River Basin, Ucayali, Perú
Abstract Guazuma crinita is a fast-growing tree with potential for use in agroforestry systems, due to its rapid wood production, which can contribute significantly to the livelihoods of small-scale farmers in the Peruvian Amazon. However, indiscriminate logging due to high demand is leading to the disappearance of natural forests. As such, the International Council for Research in Agroforestry (ICRAF) began a domestication program to reduce pressure on natural populations of the species. The objective of the present study was to use analyses of genetic parameters, adaptability (PRVG), productivity (MHPRVG), and stability (MHVG), to select G. crinita genotypes from a three-year-old progeny test established in the Aguaytía River Basin, in Ucayali, Peru. The test was established in three different sites, with three blocks, 200 progeny per block, and two individuals per plot. The measured traits were diameter at breast height (DBH), total height (H), and total aerial biomass (B). Significant differences in traits between progenies were detected, but with no genotype x environment interaction (GxE). However, the genotypic correlation among sites was important (> 0.702), suggesting that genetic improvement is possible by selecting the same progeny across sites. The mean heritability among progenies was moderate for all traits (0.34–0.369) and selective precision through combined site analysis was relatively high (0.583–0.608). Based on selection for DBH through combined analysis, MHVG, PRVG, and MHPRVG, 50 superior progenies (25.9 %) were identified for all environments. These should be prioritized in breeding programs as they can offer stable genetic variability for future selection cycles.
期刊介绍:
Silvae Genetica is an international peer reviewed journal with more than 65 year tradition and experience in all fields of theoretical and applied Forest Genetics and Tree breeding. It continues "Zeitschrift für Forstgenetik und Forstpflanzenzüchtung" (Journal of Forest Genetics and Forest Tree Breeding) founded by W. LANGNER in 1951.