基于任务驱动字典学习的结构化稀疏先验高光谱图像分类

Xiaoxia Sun, N. Nasrabadi, T. Tran
{"title":"基于任务驱动字典学习的结构化稀疏先验高光谱图像分类","authors":"Xiaoxia Sun, N. Nasrabadi, T. Tran","doi":"10.1109/ICIP.2014.7026065","DOIUrl":null,"url":null,"abstract":"In hyperspectral pixel classification, previous research have shown that the sparse representation classifier can achieve a better performance when exploiting the neighboring test pixels through enforcing different structured sparsity priors. In this paper, we propose a supervised sparse-representation-based dictionary learning method with joint or Laplacian s-parsity priors. The proposed method has numerous advantages over the existing dictionary learning techniques. It uses a structured sparsity and provides a more robust and stable sparse coefficients. Besides, it is capable of reducing the classification error by jointly optimizing the dictionary and the classifier's parameters during the dictionary training stage.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Task-driven dictionary learning for hyperspectral image classification with structured sparsity priors\",\"authors\":\"Xiaoxia Sun, N. Nasrabadi, T. Tran\",\"doi\":\"10.1109/ICIP.2014.7026065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In hyperspectral pixel classification, previous research have shown that the sparse representation classifier can achieve a better performance when exploiting the neighboring test pixels through enforcing different structured sparsity priors. In this paper, we propose a supervised sparse-representation-based dictionary learning method with joint or Laplacian s-parsity priors. The proposed method has numerous advantages over the existing dictionary learning techniques. It uses a structured sparsity and provides a more robust and stable sparse coefficients. Besides, it is capable of reducing the classification error by jointly optimizing the dictionary and the classifier's parameters during the dictionary training stage.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7026065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7026065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在高光谱像素分类中,已有研究表明,稀疏表示分类器通过施加不同的结构稀疏先验,可以在利用相邻测试像素时获得更好的性能。在本文中,我们提出了一种基于联合或拉普拉斯s-parsity先验的监督稀疏表示字典学习方法。与现有的字典学习技术相比,该方法具有许多优点。它使用结构化稀疏性,并提供更鲁棒和稳定的稀疏系数。在字典训练阶段,通过对字典和分类器参数的联合优化,降低了分类误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task-driven dictionary learning for hyperspectral image classification with structured sparsity priors
In hyperspectral pixel classification, previous research have shown that the sparse representation classifier can achieve a better performance when exploiting the neighboring test pixels through enforcing different structured sparsity priors. In this paper, we propose a supervised sparse-representation-based dictionary learning method with joint or Laplacian s-parsity priors. The proposed method has numerous advantages over the existing dictionary learning techniques. It uses a structured sparsity and provides a more robust and stable sparse coefficients. Besides, it is capable of reducing the classification error by jointly optimizing the dictionary and the classifier's parameters during the dictionary training stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信