{"title":"替代胰岛素输送系统的现代策略","authors":"І. Vlasenko, L. Davtian, V. V. Hladyshev","doi":"10.14739/2310-1210.2023.3.274844","DOIUrl":null,"url":null,"abstract":"There are barriers to initiation, use or intensification of insulin therapy for patients with diabetes. A non-invasive therapeutic approach in insulin therapy should overcome these barriers. The development of alternative methods of insulin delivery is a complex task of fundamental medicine and pharmacy. The availability of oral / nasal insulin helps millions of people with diabetes avoid daily burden of subcutaneous insulin injections.\nThe aim of the work was to study the current state of the latest developments in alternative routes of insulin delivery, their technology, and clinical trials.\nMaterials and methods. The latest publications of scientific research on non-invasive insulin delivery systems were the study objects. Content analysis, bibliosemantic, analytical, summarizing analyzes were used.\nResults. The smart insulin delivery systems and pain-reducing technologies have been developed over the years. For this, research was conducted on numerous materials and technologies, including nanoparticles, hydrogels, liposomes, ionic liquids or special devices.\nSeveral alternative delivery technologies have been identified to reduce pain (pain-reducing technologies): oral, inhaled, intranasal, buccal, transdermal, and long-acting injectable insulins, but with low frequency of use. Various modern technological approaches are applying, namely, chemical modification of insulin; mucoadhesion system; protease inhibitors; increased absorption; particle delivery systems. Smart insulin delivery technologies are based on different strategies, materials, and glucose-responsive synthesis and conversion, but a common “diffuse-type” insulin release mechanism is used. Innovations in insulin chemistry and formulations have shown improved clinical outcomes when used.\nConclusions. Innovations in alternative insulin delivery systems include algorithms for continuous glucose monitoring systems, glucose-sensitive polymer matrices and biological structures with insulin. The introduction of non-invasive systems would contribute to an earlier start of insulin therapy on medical advice, ensuring better glycemic control and reducing the risk of complications, which are the main burden on the health care system. The use of insulin in the form of alternative delivery systems may also be promising in the prevention of type 1 diabetes and other diseases.","PeriodicalId":23832,"journal":{"name":"Zaporozhye Medical Journal","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modern strategies of alternative insulin delivery systems\",\"authors\":\"І. Vlasenko, L. Davtian, V. V. Hladyshev\",\"doi\":\"10.14739/2310-1210.2023.3.274844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are barriers to initiation, use or intensification of insulin therapy for patients with diabetes. A non-invasive therapeutic approach in insulin therapy should overcome these barriers. The development of alternative methods of insulin delivery is a complex task of fundamental medicine and pharmacy. The availability of oral / nasal insulin helps millions of people with diabetes avoid daily burden of subcutaneous insulin injections.\\nThe aim of the work was to study the current state of the latest developments in alternative routes of insulin delivery, their technology, and clinical trials.\\nMaterials and methods. The latest publications of scientific research on non-invasive insulin delivery systems were the study objects. Content analysis, bibliosemantic, analytical, summarizing analyzes were used.\\nResults. The smart insulin delivery systems and pain-reducing technologies have been developed over the years. For this, research was conducted on numerous materials and technologies, including nanoparticles, hydrogels, liposomes, ionic liquids or special devices.\\nSeveral alternative delivery technologies have been identified to reduce pain (pain-reducing technologies): oral, inhaled, intranasal, buccal, transdermal, and long-acting injectable insulins, but with low frequency of use. Various modern technological approaches are applying, namely, chemical modification of insulin; mucoadhesion system; protease inhibitors; increased absorption; particle delivery systems. Smart insulin delivery technologies are based on different strategies, materials, and glucose-responsive synthesis and conversion, but a common “diffuse-type” insulin release mechanism is used. Innovations in insulin chemistry and formulations have shown improved clinical outcomes when used.\\nConclusions. Innovations in alternative insulin delivery systems include algorithms for continuous glucose monitoring systems, glucose-sensitive polymer matrices and biological structures with insulin. The introduction of non-invasive systems would contribute to an earlier start of insulin therapy on medical advice, ensuring better glycemic control and reducing the risk of complications, which are the main burden on the health care system. The use of insulin in the form of alternative delivery systems may also be promising in the prevention of type 1 diabetes and other diseases.\",\"PeriodicalId\":23832,\"journal\":{\"name\":\"Zaporozhye Medical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zaporozhye Medical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14739/2310-1210.2023.3.274844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zaporozhye Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14739/2310-1210.2023.3.274844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Modern strategies of alternative insulin delivery systems
There are barriers to initiation, use or intensification of insulin therapy for patients with diabetes. A non-invasive therapeutic approach in insulin therapy should overcome these barriers. The development of alternative methods of insulin delivery is a complex task of fundamental medicine and pharmacy. The availability of oral / nasal insulin helps millions of people with diabetes avoid daily burden of subcutaneous insulin injections.
The aim of the work was to study the current state of the latest developments in alternative routes of insulin delivery, their technology, and clinical trials.
Materials and methods. The latest publications of scientific research on non-invasive insulin delivery systems were the study objects. Content analysis, bibliosemantic, analytical, summarizing analyzes were used.
Results. The smart insulin delivery systems and pain-reducing technologies have been developed over the years. For this, research was conducted on numerous materials and technologies, including nanoparticles, hydrogels, liposomes, ionic liquids or special devices.
Several alternative delivery technologies have been identified to reduce pain (pain-reducing technologies): oral, inhaled, intranasal, buccal, transdermal, and long-acting injectable insulins, but with low frequency of use. Various modern technological approaches are applying, namely, chemical modification of insulin; mucoadhesion system; protease inhibitors; increased absorption; particle delivery systems. Smart insulin delivery technologies are based on different strategies, materials, and glucose-responsive synthesis and conversion, but a common “diffuse-type” insulin release mechanism is used. Innovations in insulin chemistry and formulations have shown improved clinical outcomes when used.
Conclusions. Innovations in alternative insulin delivery systems include algorithms for continuous glucose monitoring systems, glucose-sensitive polymer matrices and biological structures with insulin. The introduction of non-invasive systems would contribute to an earlier start of insulin therapy on medical advice, ensuring better glycemic control and reducing the risk of complications, which are the main burden on the health care system. The use of insulin in the form of alternative delivery systems may also be promising in the prevention of type 1 diabetes and other diseases.