序贯蒙特卡罗谱收敛的简单条件及其应用

Suzie Brown, P. A. Jenkins, A. M. Johansen, Jere Koskela
{"title":"序贯蒙特卡罗谱收敛的简单条件及其应用","authors":"Suzie Brown, P. A. Jenkins, A. M. Johansen, Jere Koskela","doi":"10.1214/20-ejp561","DOIUrl":null,"url":null,"abstract":"Sequential Monte Carlo algorithms are popular methods for approximating integrals in problems such as non-linear filtering and smoothing. Their performance depends strongly on the properties of an induced genealogical process. We present simple conditions under which the limiting process, as the number of particles grows, is a time-rescaled Kingman coalescent. We establish these conditions for standard sequential Monte Carlo with a broad class of low-variance resampling schemes, as well as for conditional sequential Monte Carlo with multinomial resampling.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Simple conditions for convergence of sequential Monte Carlo genealogies with applications\",\"authors\":\"Suzie Brown, P. A. Jenkins, A. M. Johansen, Jere Koskela\",\"doi\":\"10.1214/20-ejp561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequential Monte Carlo algorithms are popular methods for approximating integrals in problems such as non-linear filtering and smoothing. Their performance depends strongly on the properties of an induced genealogical process. We present simple conditions under which the limiting process, as the number of particles grows, is a time-rescaled Kingman coalescent. We establish these conditions for standard sequential Monte Carlo with a broad class of low-variance resampling schemes, as well as for conditional sequential Monte Carlo with multinomial resampling.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/20-ejp561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-ejp561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

时序蒙特卡罗算法是在非线性滤波和平滑等问题中逼近积分的常用方法。它们的表现在很大程度上取决于诱导谱系过程的性质。我们给出了一些简单的条件,在这些条件下,随着粒子数量的增加,极限过程是一个时间尺度的金曼聚结。我们为具有广泛的低方差重采样方案的标准序列蒙特卡罗,以及具有多项重采样的条件序列蒙特卡罗,建立了这些条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple conditions for convergence of sequential Monte Carlo genealogies with applications
Sequential Monte Carlo algorithms are popular methods for approximating integrals in problems such as non-linear filtering and smoothing. Their performance depends strongly on the properties of an induced genealogical process. We present simple conditions under which the limiting process, as the number of particles grows, is a time-rescaled Kingman coalescent. We establish these conditions for standard sequential Monte Carlo with a broad class of low-variance resampling schemes, as well as for conditional sequential Monte Carlo with multinomial resampling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信