A. López, B. Montañes, Ernesto Antonio Medina Dagger
{"title":"光学晶格上单轴调制狄拉克点的合并","authors":"A. López, B. Montañes, Ernesto Antonio Medina Dagger","doi":"10.5488/CMP.26.13503","DOIUrl":null,"url":null,"abstract":"We analyze the scenario of modulating the potential strength of bound atoms in an optical honeycomb lattice patterned by an electric field to emulate uniaxial strain. This modulation can be achieved by a combination of the strength of the patterned electric field and gauge vector effects using the Floquet approach. We show that such a modulation allows one to follow through a topological transition between a semi-metal and a band insulator, when two non-equivalent K points merge as a function of the electric field strength. We explicitly compute the wavefunctions for the moving K points and the Chern numbers up to the transition. Anisotropic effective masses and the insulating gap are described close to the semimetal-insulator transition.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"92 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Merging of Dirac points through uniaxial modulation on an optical lattice\",\"authors\":\"A. López, B. Montañes, Ernesto Antonio Medina Dagger\",\"doi\":\"10.5488/CMP.26.13503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the scenario of modulating the potential strength of bound atoms in an optical honeycomb lattice patterned by an electric field to emulate uniaxial strain. This modulation can be achieved by a combination of the strength of the patterned electric field and gauge vector effects using the Floquet approach. We show that such a modulation allows one to follow through a topological transition between a semi-metal and a band insulator, when two non-equivalent K points merge as a function of the electric field strength. We explicitly compute the wavefunctions for the moving K points and the Chern numbers up to the transition. Anisotropic effective masses and the insulating gap are described close to the semimetal-insulator transition.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.26.13503\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.26.13503","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Merging of Dirac points through uniaxial modulation on an optical lattice
We analyze the scenario of modulating the potential strength of bound atoms in an optical honeycomb lattice patterned by an electric field to emulate uniaxial strain. This modulation can be achieved by a combination of the strength of the patterned electric field and gauge vector effects using the Floquet approach. We show that such a modulation allows one to follow through a topological transition between a semi-metal and a band insulator, when two non-equivalent K points merge as a function of the electric field strength. We explicitly compute the wavefunctions for the moving K points and the Chern numbers up to the transition. Anisotropic effective masses and the insulating gap are described close to the semimetal-insulator transition.
期刊介绍:
Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.