Alperen Kantarcı, Hasan Dertli, Hazım Kemal Ekenel
{"title":"用于表示攻击检测的深度补丁监督","authors":"Alperen Kantarcı, Hasan Dertli, Hazım Kemal Ekenel","doi":"10.1049/bme2.12091","DOIUrl":null,"url":null,"abstract":"<p>Face recognition systems have been widely deployed in various applications, such as online banking and mobile payment. However, these systems are vulnerable to face presentation attacks, which are created by people who obtain biometric data covertly from a person or through hacked systems. In order to detect these attacks, convolutional neural networks (CNN)-based systems have gained significant popularity recently. CNN-based systems perform very well on intra-data set experiments, yet they fail to generalise to the data sets that they have not been trained on. This indicates that they tend to memorise data set-specific spoof traces. To mitigate this problem, the authors propose a Deep Patch-wise Supervision Presentation Attack Detection (DPS-PAD) model approach that combines pixel-wise binary supervision with patch-based CNN. The authors’ experiments show that the proposed patch-based method forces the model not to memorise the background information or data set-specific traces. The authors extensively tested the proposed method on widely used PAD data sets—Replay-Mobile and OULU-NPU—and on a real-world data set that has been collected for real-world PAD use cases. The proposed approach is found to be superior on challenging experimental setups. Namely, it achieves higher performance on OULU-NPU protocol 3, 4 and on inter-data set real-world experiments.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"11 5","pages":"396-406"},"PeriodicalIF":1.8000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12091","citationCount":"0","resultStr":"{\"title\":\"Deep patch-wise supervision for presentation attack detection\",\"authors\":\"Alperen Kantarcı, Hasan Dertli, Hazım Kemal Ekenel\",\"doi\":\"10.1049/bme2.12091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Face recognition systems have been widely deployed in various applications, such as online banking and mobile payment. However, these systems are vulnerable to face presentation attacks, which are created by people who obtain biometric data covertly from a person or through hacked systems. In order to detect these attacks, convolutional neural networks (CNN)-based systems have gained significant popularity recently. CNN-based systems perform very well on intra-data set experiments, yet they fail to generalise to the data sets that they have not been trained on. This indicates that they tend to memorise data set-specific spoof traces. To mitigate this problem, the authors propose a Deep Patch-wise Supervision Presentation Attack Detection (DPS-PAD) model approach that combines pixel-wise binary supervision with patch-based CNN. The authors’ experiments show that the proposed patch-based method forces the model not to memorise the background information or data set-specific traces. The authors extensively tested the proposed method on widely used PAD data sets—Replay-Mobile and OULU-NPU—and on a real-world data set that has been collected for real-world PAD use cases. The proposed approach is found to be superior on challenging experimental setups. Namely, it achieves higher performance on OULU-NPU protocol 3, 4 and on inter-data set real-world experiments.</p>\",\"PeriodicalId\":48821,\"journal\":{\"name\":\"IET Biometrics\",\"volume\":\"11 5\",\"pages\":\"396-406\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12091\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Biometrics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12091\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12091","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep patch-wise supervision for presentation attack detection
Face recognition systems have been widely deployed in various applications, such as online banking and mobile payment. However, these systems are vulnerable to face presentation attacks, which are created by people who obtain biometric data covertly from a person or through hacked systems. In order to detect these attacks, convolutional neural networks (CNN)-based systems have gained significant popularity recently. CNN-based systems perform very well on intra-data set experiments, yet they fail to generalise to the data sets that they have not been trained on. This indicates that they tend to memorise data set-specific spoof traces. To mitigate this problem, the authors propose a Deep Patch-wise Supervision Presentation Attack Detection (DPS-PAD) model approach that combines pixel-wise binary supervision with patch-based CNN. The authors’ experiments show that the proposed patch-based method forces the model not to memorise the background information or data set-specific traces. The authors extensively tested the proposed method on widely used PAD data sets—Replay-Mobile and OULU-NPU—and on a real-world data set that has been collected for real-world PAD use cases. The proposed approach is found to be superior on challenging experimental setups. Namely, it achieves higher performance on OULU-NPU protocol 3, 4 and on inter-data set real-world experiments.
IET BiometricsCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍:
The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding.
The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies:
Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.)
Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches
Soft biometrics and information fusion for identification, verification and trait prediction
Human factors and the human-computer interface issues for biometric systems, exception handling strategies
Template construction and template management, ageing factors and their impact on biometric systems
Usability and user-oriented design, psychological and physiological principles and system integration
Sensors and sensor technologies for biometric processing
Database technologies to support biometric systems
Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation
Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection
Biometric cryptosystems, security and biometrics-linked encryption
Links with forensic processing and cross-disciplinary commonalities
Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated
Applications and application-led considerations
Position papers on technology or on the industrial context of biometric system development
Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions
Relevant ethical and social issues