ILP分解参数的复杂性景观

R. Ganian, S. Ordyniak
{"title":"ILP分解参数的复杂性景观","authors":"R. Ganian, S. Ordyniak","doi":"10.1609/aaai.v30i1.10078","DOIUrl":null,"url":null,"abstract":"\n \n Integer Linear Programming (ILP) can be seen as the archetypical problem for NP-complete optimization problems, and a wide range of problems in artificial intelligence are solved in practice via a translation to ILP. Despite its huge range of applications, only few tractable fragments of ILP are known, probably the most prominent of which is based on the notion of total unimodularity. Using entirely different techniques, we identify new tractable fragments of ILP by studying structural parameterizations of the constraint matrix within the framework of parameterized complexity. In particular, we show that ILP is fixed-parameter tractable when parameterized by the treedepth of the constraint matrix and the maximum absolute value of any coefficient occurring in the ILP instance. Together with matching hardness results for the more general parameter treewidth, we draw a detailed complexity landscape of ILP w.r.t. decompositional parameters defined on the constraint matrix.\n \n","PeriodicalId":8496,"journal":{"name":"Artif. Intell.","volume":"55 1","pages":"61-71"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"The Complexity Landscape of Decompositional Parameters for ILP\",\"authors\":\"R. Ganian, S. Ordyniak\",\"doi\":\"10.1609/aaai.v30i1.10078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Integer Linear Programming (ILP) can be seen as the archetypical problem for NP-complete optimization problems, and a wide range of problems in artificial intelligence are solved in practice via a translation to ILP. Despite its huge range of applications, only few tractable fragments of ILP are known, probably the most prominent of which is based on the notion of total unimodularity. Using entirely different techniques, we identify new tractable fragments of ILP by studying structural parameterizations of the constraint matrix within the framework of parameterized complexity. In particular, we show that ILP is fixed-parameter tractable when parameterized by the treedepth of the constraint matrix and the maximum absolute value of any coefficient occurring in the ILP instance. Together with matching hardness results for the more general parameter treewidth, we draw a detailed complexity landscape of ILP w.r.t. decompositional parameters defined on the constraint matrix.\\n \\n\",\"PeriodicalId\":8496,\"journal\":{\"name\":\"Artif. Intell.\",\"volume\":\"55 1\",\"pages\":\"61-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artif. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v30i1.10078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v30i1.10078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

整数线性规划(ILP)可以看作是np完全优化问题的典型问题,在实践中,人工智能中的许多问题都是通过转化为整数线性规划来解决的。尽管它的应用范围很广,但只有少数可处理的ILP片段是已知的,其中最突出的可能是基于完全单模块化的概念。利用完全不同的技术,我们通过在参数化复杂性框架内研究约束矩阵的结构参数化来识别新的可处理的ILP片段。特别地,我们证明了当约束矩阵的树深和ILP实例中出现的任何系数的最大绝对值参数化时,ILP是固定参数可处理的。结合更一般参数树宽的匹配硬度结果,我们绘制了约束矩阵上定义的ILP w.r.t.分解参数的详细复杂性图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Complexity Landscape of Decompositional Parameters for ILP
Integer Linear Programming (ILP) can be seen as the archetypical problem for NP-complete optimization problems, and a wide range of problems in artificial intelligence are solved in practice via a translation to ILP. Despite its huge range of applications, only few tractable fragments of ILP are known, probably the most prominent of which is based on the notion of total unimodularity. Using entirely different techniques, we identify new tractable fragments of ILP by studying structural parameterizations of the constraint matrix within the framework of parameterized complexity. In particular, we show that ILP is fixed-parameter tractable when parameterized by the treedepth of the constraint matrix and the maximum absolute value of any coefficient occurring in the ILP instance. Together with matching hardness results for the more general parameter treewidth, we draw a detailed complexity landscape of ILP w.r.t. decompositional parameters defined on the constraint matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信