在未修改的移动设备周围的空中手势

Jie Song, Gábor Sörös, Fabrizio Pece, S. Fanello, S. Izadi, Cem Keskin, Otmar Hilliges
{"title":"在未修改的移动设备周围的空中手势","authors":"Jie Song, Gábor Sörös, Fabrizio Pece, S. Fanello, S. Izadi, Cem Keskin, Otmar Hilliges","doi":"10.1145/2642918.2647373","DOIUrl":null,"url":null,"abstract":"We present a novel machine learning based algorithm extending the interaction space around mobile devices. The technique uses only the RGB camera now commonplace on off-the-shelf mobile devices. Our algorithm robustly recognizes a wide range of in-air gestures, supporting user variation, and varying lighting conditions. We demonstrate that our algorithm runs in real-time on unmodified mobile devices, including resource-constrained smartphones and smartwatches. Our goal is not to replace the touchscreen as primary input device, but rather to augment and enrich the existing interaction vocabulary using gestures. While touch input works well for many scenarios, we demonstrate numerous interaction tasks such as mode switches, application and task management, menu selection and certain types of navigation, where such input can be either complemented or better served by in-air gestures. This removes screen real-estate issues on small touchscreens, and allows input to be expanded to the 3D space around the device. We present results for recognition accuracy (93% test and 98% train), impact of memory footprint and other model parameters. Finally, we report results from preliminary user evaluations, discuss advantages and limitations and conclude with directions for future work.","PeriodicalId":20543,"journal":{"name":"Proceedings of the 27th annual ACM symposium on User interface software and technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"175","resultStr":"{\"title\":\"In-air gestures around unmodified mobile devices\",\"authors\":\"Jie Song, Gábor Sörös, Fabrizio Pece, S. Fanello, S. Izadi, Cem Keskin, Otmar Hilliges\",\"doi\":\"10.1145/2642918.2647373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel machine learning based algorithm extending the interaction space around mobile devices. The technique uses only the RGB camera now commonplace on off-the-shelf mobile devices. Our algorithm robustly recognizes a wide range of in-air gestures, supporting user variation, and varying lighting conditions. We demonstrate that our algorithm runs in real-time on unmodified mobile devices, including resource-constrained smartphones and smartwatches. Our goal is not to replace the touchscreen as primary input device, but rather to augment and enrich the existing interaction vocabulary using gestures. While touch input works well for many scenarios, we demonstrate numerous interaction tasks such as mode switches, application and task management, menu selection and certain types of navigation, where such input can be either complemented or better served by in-air gestures. This removes screen real-estate issues on small touchscreens, and allows input to be expanded to the 3D space around the device. We present results for recognition accuracy (93% test and 98% train), impact of memory footprint and other model parameters. Finally, we report results from preliminary user evaluations, discuss advantages and limitations and conclude with directions for future work.\",\"PeriodicalId\":20543,\"journal\":{\"name\":\"Proceedings of the 27th annual ACM symposium on User interface software and technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"175\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th annual ACM symposium on User interface software and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2642918.2647373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th annual ACM symposium on User interface software and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2642918.2647373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 175

摘要

我们提出了一种新的基于机器学习的算法,扩展了移动设备周围的交互空间。这项技术只使用了现在市面上常见的RGB相机。我们的算法稳健地识别各种空中手势,支持用户变化和不同的照明条件。我们证明了我们的算法可以在未经修改的移动设备上实时运行,包括资源受限的智能手机和智能手表。我们的目标不是取代触摸屏作为主要的输入设备,而是使用手势来增强和丰富现有的交互词汇表。虽然触摸输入在许多情况下都能很好地工作,但我们展示了许多交互任务,如模式切换、应用程序和任务管理、菜单选择和某些类型的导航,这些输入可以通过空中手势来补充或更好地服务。这消除了小型触摸屏的屏幕空间问题,并允许将输入扩展到设备周围的3D空间。我们给出了识别精度(93%测试和98%训练)、内存占用影响和其他模型参数的结果。最后,我们报告了初步用户评估的结果,讨论了优势和局限性,并对未来的工作方向进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-air gestures around unmodified mobile devices
We present a novel machine learning based algorithm extending the interaction space around mobile devices. The technique uses only the RGB camera now commonplace on off-the-shelf mobile devices. Our algorithm robustly recognizes a wide range of in-air gestures, supporting user variation, and varying lighting conditions. We demonstrate that our algorithm runs in real-time on unmodified mobile devices, including resource-constrained smartphones and smartwatches. Our goal is not to replace the touchscreen as primary input device, but rather to augment and enrich the existing interaction vocabulary using gestures. While touch input works well for many scenarios, we demonstrate numerous interaction tasks such as mode switches, application and task management, menu selection and certain types of navigation, where such input can be either complemented or better served by in-air gestures. This removes screen real-estate issues on small touchscreens, and allows input to be expanded to the 3D space around the device. We present results for recognition accuracy (93% test and 98% train), impact of memory footprint and other model parameters. Finally, we report results from preliminary user evaluations, discuss advantages and limitations and conclude with directions for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信