分层项目的混合推荐方法

D. Wu, Jie Lu, Guangquan Zhang
{"title":"分层项目的混合推荐方法","authors":"D. Wu, Jie Lu, Guangquan Zhang","doi":"10.1109/ISKE.2010.5680827","DOIUrl":null,"url":null,"abstract":"Recommender systems aim to recommend items that are likely to be of interest to the user. In many business situations, complex items are described by hierarchical tree structures, which contain rich semantic information. To recommend hierarchical items accurately, the semantic information of the hierarchical tree structures must be considered comprehensively. In this study, a new hybrid recommendation approach for complex hierarchical tree structured items is proposed. In this approach, a comprehensive semantic similarity measure model for hierarchical tree structured items is developed. It is integrated with the traditional item-based collaborative filtering approach to generate recommendations.","PeriodicalId":6417,"journal":{"name":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","volume":"119 1","pages":"492-497"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A hybrid recommendation approach for hierarchical items\",\"authors\":\"D. Wu, Jie Lu, Guangquan Zhang\",\"doi\":\"10.1109/ISKE.2010.5680827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems aim to recommend items that are likely to be of interest to the user. In many business situations, complex items are described by hierarchical tree structures, which contain rich semantic information. To recommend hierarchical items accurately, the semantic information of the hierarchical tree structures must be considered comprehensively. In this study, a new hybrid recommendation approach for complex hierarchical tree structured items is proposed. In this approach, a comprehensive semantic similarity measure model for hierarchical tree structured items is developed. It is integrated with the traditional item-based collaborative filtering approach to generate recommendations.\",\"PeriodicalId\":6417,\"journal\":{\"name\":\"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering\",\"volume\":\"119 1\",\"pages\":\"492-497\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2010.5680827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2010.5680827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

推荐系统的目标是推荐用户可能感兴趣的项目。在许多业务情况下,复杂的项目由层次树结构描述,其中包含丰富的语义信息。为了准确地推荐层次条目,必须综合考虑层次树结构的语义信息。本文提出了一种针对复杂层次树状结构项目的混合推荐方法。在此方法中,建立了一个层次树状结构项目的综合语义相似度度量模型。它与传统的基于项目的协同过滤方法集成以生成推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid recommendation approach for hierarchical items
Recommender systems aim to recommend items that are likely to be of interest to the user. In many business situations, complex items are described by hierarchical tree structures, which contain rich semantic information. To recommend hierarchical items accurately, the semantic information of the hierarchical tree structures must be considered comprehensively. In this study, a new hybrid recommendation approach for complex hierarchical tree structured items is proposed. In this approach, a comprehensive semantic similarity measure model for hierarchical tree structured items is developed. It is integrated with the traditional item-based collaborative filtering approach to generate recommendations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信