基于HMM的OCR系统性能评价

Q4 Computer Science
J. C. Anigbogu, A. Belaïd
{"title":"基于HMM的OCR系统性能评价","authors":"J. C. Anigbogu, A. Belaïd","doi":"10.1109/ICPR.1992.201697","DOIUrl":null,"url":null,"abstract":"Presents a performance analysis of a first order hidden Markov model based OCR system. Trade-offs between accuracy in terms of recognition rates and complexity in terms of the number of states in the model are discussed. For most fonts, optimal performance is achieved with 6-state models. With adequate heuristics and reliable post-processors, 5-state and even 4-state models give reasonable performances (up to 99.60% at 4-states).<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Performance evaluation of an HMM based OCR system\",\"authors\":\"J. C. Anigbogu, A. Belaïd\",\"doi\":\"10.1109/ICPR.1992.201697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents a performance analysis of a first order hidden Markov model based OCR system. Trade-offs between accuracy in terms of recognition rates and complexity in terms of the number of states in the model are discussed. For most fonts, optimal performance is achieved with 6-state models. With adequate heuristics and reliable post-processors, 5-state and even 4-state models give reasonable performances (up to 99.60% at 4-states).<<ETX>>\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1992.201697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 8

摘要

给出了一阶隐马尔可夫模型OCR系统的性能分析。讨论了在识别率方面的准确性和模型中状态数方面的复杂性之间的权衡。对于大多数字体,使用6状态模型可以实现最佳性能。有了足够的启发式和可靠的后处理器,5-状态甚至4-状态模型都能给出合理的性能(4-状态下高达99.60%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation of an HMM based OCR system
Presents a performance analysis of a first order hidden Markov model based OCR system. Trade-offs between accuracy in terms of recognition rates and complexity in terms of the number of states in the model are discussed. For most fonts, optimal performance is achieved with 6-state models. With adequate heuristics and reliable post-processors, 5-state and even 4-state models give reasonable performances (up to 99.60% at 4-states).<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信