多路数据的kronecker结构协方差模型

IF 11 Q1 STATISTICS & PROBABILITY
Yu Wang, Zeyu Sun, Dogyoon Song, A. Hero
{"title":"多路数据的kronecker结构协方差模型","authors":"Yu Wang, Zeyu Sun, Dogyoon Song, A. Hero","doi":"10.1214/22-ss139","DOIUrl":null,"url":null,"abstract":": Many applications produce multiway data of exceedingly high dimension. Modeling such multi-way data is important in multichannel signal and video processing where sensors produce multi-indexed data, e.g. over spatial, frequency, and temporal dimensions. We will address the challenges of covariance representation of multiway data and review some of the progress in statistical modeling of multiway covariance over the past two decades, focusing on tensor-valued covariance models and their infer- ence. We will illustrate through a space weather application: predicting the evolution of solar active regions over time.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"8 1","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Kronecker-structured covariance models for multiway data\",\"authors\":\"Yu Wang, Zeyu Sun, Dogyoon Song, A. Hero\",\"doi\":\"10.1214/22-ss139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Many applications produce multiway data of exceedingly high dimension. Modeling such multi-way data is important in multichannel signal and video processing where sensors produce multi-indexed data, e.g. over spatial, frequency, and temporal dimensions. We will address the challenges of covariance representation of multiway data and review some of the progress in statistical modeling of multiway covariance over the past two decades, focusing on tensor-valued covariance models and their infer- ence. We will illustrate through a space weather application: predicting the evolution of solar active regions over time.\",\"PeriodicalId\":46627,\"journal\":{\"name\":\"Statistics Surveys\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ss139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-ss139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

许多应用程序产生多维度极高的多向数据。这种多路数据建模在多通道信号和视频处理中非常重要,其中传感器产生多索引数据,例如在空间,频率和时间维度上。我们将解决多向数据协方差表示的挑战,并回顾过去二十年来多向协方差统计建模的一些进展,重点是张量值协方差模型及其推断。我们将通过一个空间天气应用来说明:预测太阳活动区随时间的演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kronecker-structured covariance models for multiway data
: Many applications produce multiway data of exceedingly high dimension. Modeling such multi-way data is important in multichannel signal and video processing where sensors produce multi-indexed data, e.g. over spatial, frequency, and temporal dimensions. We will address the challenges of covariance representation of multiway data and review some of the progress in statistical modeling of multiway covariance over the past two decades, focusing on tensor-valued covariance models and their infer- ence. We will illustrate through a space weather application: predicting the evolution of solar active regions over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics Surveys
Statistics Surveys STATISTICS & PROBABILITY-
CiteScore
11.70
自引率
0.00%
发文量
5
期刊介绍: Statistics Surveys publishes survey articles in theoretical, computational, and applied statistics. The style of articles may range from reviews of recent research to graduate textbook exposition. Articles may be broad or narrow in scope. The essential requirements are a well specified topic and target audience, together with clear exposition. Statistics Surveys is sponsored by the American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and by the Statistical Society of Canada.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信