明渠结最佳角的数值研究

Q3 Engineering
W. Hassan, Nidaa Ali Shabat
{"title":"明渠结最佳角的数值研究","authors":"W. Hassan, Nidaa Ali Shabat","doi":"10.28991/cej-2023-09-05-07","DOIUrl":null,"url":null,"abstract":"Numerous natural and artificial streams, including those for irrigation ditches, wastewater treatment facilities, and conveyance structures for fish movement, have open channel confluences. The flow dynamics at and around the junction are intricate; in particular, immediately downstream of the junction, the flow creates a zone of separation on the inner wall along with secondary recirculation patterns. The structure of this complicated flow depends on several factors, including the flow rates in both channels, the angle of confluence, the geometry of the channels, including the longitudinal slope and bed discordance, the roughness of the boundary, and the intensity of the turbulence. It also has a significant impact on bed erosion, bank scouring, etc. The objective of the current work is to calculate the velocity profile and the separation zone dimensions for four angles (30o, 45o, 60o, and 75o) through the simulation process, and the best angle using a three-dimensional model. This work gives a detailed application of the numerical solution (Finite Volume) via Flow 3D software. Results for two flow discharge ratios, q*=0.250 and q*=0.750 were shown; the numerical model and the experimental results agreed well. The findings are consistent with past research and demonstrate how the main channel flow pattern is affected by changes in the channel crossing angle, as well as how greater separation zones are produced in the main channel when the flow discharge ratio q* (main channel flow divided by total flow) is smaller. Analysis revealed that the separation zone's smallest diameter will be at the 75ocrossing angle. Doi: 10.28991/CEJ-2023-09-05-07 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation of the Optimum Angle for Open Channel Junction\",\"authors\":\"W. Hassan, Nidaa Ali Shabat\",\"doi\":\"10.28991/cej-2023-09-05-07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous natural and artificial streams, including those for irrigation ditches, wastewater treatment facilities, and conveyance structures for fish movement, have open channel confluences. The flow dynamics at and around the junction are intricate; in particular, immediately downstream of the junction, the flow creates a zone of separation on the inner wall along with secondary recirculation patterns. The structure of this complicated flow depends on several factors, including the flow rates in both channels, the angle of confluence, the geometry of the channels, including the longitudinal slope and bed discordance, the roughness of the boundary, and the intensity of the turbulence. It also has a significant impact on bed erosion, bank scouring, etc. The objective of the current work is to calculate the velocity profile and the separation zone dimensions for four angles (30o, 45o, 60o, and 75o) through the simulation process, and the best angle using a three-dimensional model. This work gives a detailed application of the numerical solution (Finite Volume) via Flow 3D software. Results for two flow discharge ratios, q*=0.250 and q*=0.750 were shown; the numerical model and the experimental results agreed well. The findings are consistent with past research and demonstrate how the main channel flow pattern is affected by changes in the channel crossing angle, as well as how greater separation zones are produced in the main channel when the flow discharge ratio q* (main channel flow divided by total flow) is smaller. Analysis revealed that the separation zone's smallest diameter will be at the 75ocrossing angle. Doi: 10.28991/CEJ-2023-09-05-07 Full Text: PDF\",\"PeriodicalId\":53612,\"journal\":{\"name\":\"Open Civil Engineering Journal\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Civil Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28991/cej-2023-09-05-07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-05-07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

许多天然和人工溪流,包括灌溉沟渠、废水处理设施和鱼类流动的运输结构,都有明渠汇合处。交界处及其周围的流动动力学是复杂的;特别是,在连接处的下游,流动在内壁上形成了一个分离区,伴随着二次再循环模式。这种复杂流动的结构取决于几个因素,包括两个通道的流速、合流角、通道的几何形状(包括纵向坡度和河床不一致)、边界的粗糙度和湍流的强度。它对河床侵蚀、河岸冲刷等也有显著影响。本次工作的目的是通过仿真过程计算出300度、45度、60度和75度四个角度的速度剖面和分离带尺寸,并利用三维模型计算出最佳角度。本文通过Flow 3D软件给出了数值解(有限体积)的详细应用。给出了两种流量比q*=0.250和q*=0.750的结果;数值模型与实验结果吻合较好。研究结果与以往的研究结果一致,证明了主河道的流型受河道过流角变化的影响,以及当流量比q*(主河道流量除以总流量)越小时,主河道内产生的分离带越大。分析表明,分离带的最小直径将在75相交角处。Doi: 10.28991/CEJ-2023-09-05-07全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Investigation of the Optimum Angle for Open Channel Junction
Numerous natural and artificial streams, including those for irrigation ditches, wastewater treatment facilities, and conveyance structures for fish movement, have open channel confluences. The flow dynamics at and around the junction are intricate; in particular, immediately downstream of the junction, the flow creates a zone of separation on the inner wall along with secondary recirculation patterns. The structure of this complicated flow depends on several factors, including the flow rates in both channels, the angle of confluence, the geometry of the channels, including the longitudinal slope and bed discordance, the roughness of the boundary, and the intensity of the turbulence. It also has a significant impact on bed erosion, bank scouring, etc. The objective of the current work is to calculate the velocity profile and the separation zone dimensions for four angles (30o, 45o, 60o, and 75o) through the simulation process, and the best angle using a three-dimensional model. This work gives a detailed application of the numerical solution (Finite Volume) via Flow 3D software. Results for two flow discharge ratios, q*=0.250 and q*=0.750 were shown; the numerical model and the experimental results agreed well. The findings are consistent with past research and demonstrate how the main channel flow pattern is affected by changes in the channel crossing angle, as well as how greater separation zones are produced in the main channel when the flow discharge ratio q* (main channel flow divided by total flow) is smaller. Analysis revealed that the separation zone's smallest diameter will be at the 75ocrossing angle. Doi: 10.28991/CEJ-2023-09-05-07 Full Text: PDF
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Civil Engineering Journal
Open Civil Engineering Journal Engineering-Civil and Structural Engineering
CiteScore
1.90
自引率
0.00%
发文量
17
期刊介绍: The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信