用于复杂场景下新兴通信网络的基于lora的低成本纳米卫星

IF 0.1 4区 工程技术 Q4 ENGINEERING, AEROSPACE
Raúl Parada, Victor Monzon Baeza, David N. Barraca-Ibort, Carlos Monzo
{"title":"用于复杂场景下新兴通信网络的基于lora的低成本纳米卫星","authors":"Raúl Parada, Victor Monzon Baeza, David N. Barraca-Ibort, Carlos Monzo","doi":"10.3390/aerospace10090754","DOIUrl":null,"url":null,"abstract":"Wireless broadband coverage has reached 95% worldwide. However, its trend is expected to stay the same in the following years, presenting challenges for scenarios such as remote villages and their surrounding environments. Inaccessibility to these areas for installing terrestrial base stations is the main challenge to bridge the connectivity gap. In addition, there are emergencies, for instance, earthquakes or war areas, that require a fast communication reaction by developing networks that are less susceptible to disruption. Therefore, we propose a low-cost, green-based nanosatellite system to provide complete coverage in hard-to-reach areas using long-range communication. The system comprises a pilot station, a base station, and a CubeSat with sensor data collector capabilities acting as a repeater. Our system can be built within hours with a 3D printer using common material, providing a flexible environment where components can be replaced freely according to user requirements, such as sensors and communication protocols. The experiments are performed in Spain by two test sets validating the communication among all components, with RSSI values below −148 dBm and the longest distance above 14 km. We highlight the reduction in the environmental impact of this proposal using a balloon-based launch platform that contributes to sustainable development.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LoRa-Based Low-Cost Nanosatellite for Emerging Communication Networks in Complex Scenarios\",\"authors\":\"Raúl Parada, Victor Monzon Baeza, David N. Barraca-Ibort, Carlos Monzo\",\"doi\":\"10.3390/aerospace10090754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless broadband coverage has reached 95% worldwide. However, its trend is expected to stay the same in the following years, presenting challenges for scenarios such as remote villages and their surrounding environments. Inaccessibility to these areas for installing terrestrial base stations is the main challenge to bridge the connectivity gap. In addition, there are emergencies, for instance, earthquakes or war areas, that require a fast communication reaction by developing networks that are less susceptible to disruption. Therefore, we propose a low-cost, green-based nanosatellite system to provide complete coverage in hard-to-reach areas using long-range communication. The system comprises a pilot station, a base station, and a CubeSat with sensor data collector capabilities acting as a repeater. Our system can be built within hours with a 3D printer using common material, providing a flexible environment where components can be replaced freely according to user requirements, such as sensors and communication protocols. The experiments are performed in Spain by two test sets validating the communication among all components, with RSSI values below −148 dBm and the longest distance above 14 km. We highlight the reduction in the environmental impact of this proposal using a balloon-based launch platform that contributes to sustainable development.\",\"PeriodicalId\":50845,\"journal\":{\"name\":\"Aerospace America\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace America\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace10090754\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace America","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10090754","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

摘要

全球无线宽带覆盖率达到95%。然而,这一趋势预计将在未来几年保持不变,给偏远村庄及其周边环境等场景带来挑战。无法进入这些地区安装地面基站是弥补连接差距的主要挑战。此外,还有一些紧急情况,例如地震或战区,需要通过发展不易受干扰的网络来快速反应。因此,我们提出了一种低成本、基于绿色的纳米卫星系统,利用远程通信在难以到达的地区提供完全覆盖。该系统包括一个导频站、一个基站和一个具有传感器数据采集能力的立方体卫星(CubeSat)作为中继器。我们的系统可以在几个小时内用普通材料用3D打印机建立,提供一个灵活的环境,组件可以根据用户的要求自由更换,如传感器和通信协议。在西班牙进行了两组试验,验证了各部件之间的通信,RSSI值低于- 148 dBm,最远距离在14 km以上。我们强调,该提案使用一个有助于可持续发展的气球发射平台,以减少对环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LoRa-Based Low-Cost Nanosatellite for Emerging Communication Networks in Complex Scenarios
Wireless broadband coverage has reached 95% worldwide. However, its trend is expected to stay the same in the following years, presenting challenges for scenarios such as remote villages and their surrounding environments. Inaccessibility to these areas for installing terrestrial base stations is the main challenge to bridge the connectivity gap. In addition, there are emergencies, for instance, earthquakes or war areas, that require a fast communication reaction by developing networks that are less susceptible to disruption. Therefore, we propose a low-cost, green-based nanosatellite system to provide complete coverage in hard-to-reach areas using long-range communication. The system comprises a pilot station, a base station, and a CubeSat with sensor data collector capabilities acting as a repeater. Our system can be built within hours with a 3D printer using common material, providing a flexible environment where components can be replaced freely according to user requirements, such as sensors and communication protocols. The experiments are performed in Spain by two test sets validating the communication among all components, with RSSI values below −148 dBm and the longest distance above 14 km. We highlight the reduction in the environmental impact of this proposal using a balloon-based launch platform that contributes to sustainable development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace America
Aerospace America 工程技术-工程:宇航
自引率
0.00%
发文量
9
审稿时长
4-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信