关于小拟核猜想的结果

J. Ai, S. Gerke, G. Gutin, Anders Yeo, Yacong Zhou
{"title":"关于小拟核猜想的结果","authors":"J. Ai, S. Gerke, G. Gutin, Anders Yeo, Yacong Zhou","doi":"10.48550/arXiv.2207.12157","DOIUrl":null,"url":null,"abstract":"A {\\em quasi-kernel} of a digraph $D$ is an independent set $Q\\subseteq V(D)$ such that for every vertex $v\\in V(D)\\backslash Q$, there exists a directed path with one or two arcs from $v$ to a vertex $u\\in Q$. In 1974, Chv\\'{a}tal and Lov\\'{a}sz proved that every digraph has a quasi-kernel. In 1976, Erd\\H{o}s and S\\'zekely conjectured that every sink-free digraph $D=(V(D),A(D))$ has a quasi-kernel of size at most $|V(D)|/2$. In this paper, we give a new method to show that the conjecture holds for a generalization of anti-claw-free digraphs. For any sink-free one-way split digraph $D$ of order $n$, when $n\\geq 3$, we show a stronger result that $D$ has a quasi-kernel of size at most $\\frac{n+3}{2} - \\sqrt{n}$, and the bound is sharp.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Results on the Small Quasi-Kernel Conjecture\",\"authors\":\"J. Ai, S. Gerke, G. Gutin, Anders Yeo, Yacong Zhou\",\"doi\":\"10.48550/arXiv.2207.12157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A {\\\\em quasi-kernel} of a digraph $D$ is an independent set $Q\\\\subseteq V(D)$ such that for every vertex $v\\\\in V(D)\\\\backslash Q$, there exists a directed path with one or two arcs from $v$ to a vertex $u\\\\in Q$. In 1974, Chv\\\\'{a}tal and Lov\\\\'{a}sz proved that every digraph has a quasi-kernel. In 1976, Erd\\\\H{o}s and S\\\\'zekely conjectured that every sink-free digraph $D=(V(D),A(D))$ has a quasi-kernel of size at most $|V(D)|/2$. In this paper, we give a new method to show that the conjecture holds for a generalization of anti-claw-free digraphs. For any sink-free one-way split digraph $D$ of order $n$, when $n\\\\geq 3$, we show a stronger result that $D$ has a quasi-kernel of size at most $\\\\frac{n+3}{2} - \\\\sqrt{n}$, and the bound is sharp.\",\"PeriodicalId\":21749,\"journal\":{\"name\":\"SIAM J. Discret. Math.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Discret. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.12157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.12157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

有向图{\em}$D$的核是一个独立的集合$Q\subseteq V(D)$,使得对于每个顶点$v\in V(D)\backslash Q$,存在一条从$v$到顶点$u\in Q$的有向路径,有一条或两条弧。1974年,Chvátal和Lovász证明了每个有向图都有一个拟核。1976年,Erd \H{o} s和Sźekely推测每个无汇有向图$D=(V(D),A(D))$都有一个大小不超过$|V(D)|/2$的拟核。本文给出了一种新的方法来证明反无爪有向图的一种推广的猜想成立。对于任意阶为$n$的无汇单向分裂有向图$D$,当$n\geq 3$时,我们给出了一个更强的结果,即$D$有一个大小不超过$\frac{n+3}{2} - \sqrt{n}$的拟核,并且界是锐利的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Results on the Small Quasi-Kernel Conjecture
A {\em quasi-kernel} of a digraph $D$ is an independent set $Q\subseteq V(D)$ such that for every vertex $v\in V(D)\backslash Q$, there exists a directed path with one or two arcs from $v$ to a vertex $u\in Q$. In 1974, Chv\'{a}tal and Lov\'{a}sz proved that every digraph has a quasi-kernel. In 1976, Erd\H{o}s and S\'zekely conjectured that every sink-free digraph $D=(V(D),A(D))$ has a quasi-kernel of size at most $|V(D)|/2$. In this paper, we give a new method to show that the conjecture holds for a generalization of anti-claw-free digraphs. For any sink-free one-way split digraph $D$ of order $n$, when $n\geq 3$, we show a stronger result that $D$ has a quasi-kernel of size at most $\frac{n+3}{2} - \sqrt{n}$, and the bound is sharp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信