{"title":"颜色的类型理论","authors":"Jean-Philippe Bernardy, Guilhem Moulin","doi":"10.1145/2500365.2500577","DOIUrl":null,"url":null,"abstract":"Dependent type-theory aims to become the standard way to formalize mathematics at the same time as displacing traditional platforms for high-assurance programming. However, current implementations of type theory are still lacking, in the sense that some obvious truths require explicit proofs, making type-theory awkward to use for many applications, both in formalization and programming. In particular, notions of erasure are poorly supported. In this paper we propose an extension of type-theory with colored terms, color erasure and interpretation of colored types as predicates. The result is a more powerful type-theory: some definitions and proofs may be omitted as they become trivial, it becomes easier to program with precise types, and some parametricity results can be internalized.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Type-theory in color\",\"authors\":\"Jean-Philippe Bernardy, Guilhem Moulin\",\"doi\":\"10.1145/2500365.2500577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dependent type-theory aims to become the standard way to formalize mathematics at the same time as displacing traditional platforms for high-assurance programming. However, current implementations of type theory are still lacking, in the sense that some obvious truths require explicit proofs, making type-theory awkward to use for many applications, both in formalization and programming. In particular, notions of erasure are poorly supported. In this paper we propose an extension of type-theory with colored terms, color erasure and interpretation of colored types as predicates. The result is a more powerful type-theory: some definitions and proofs may be omitted as they become trivial, it becomes easier to program with precise types, and some parametricity results can be internalized.\",\"PeriodicalId\":20504,\"journal\":{\"name\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2500365.2500577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2500365.2500577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dependent type-theory aims to become the standard way to formalize mathematics at the same time as displacing traditional platforms for high-assurance programming. However, current implementations of type theory are still lacking, in the sense that some obvious truths require explicit proofs, making type-theory awkward to use for many applications, both in formalization and programming. In particular, notions of erasure are poorly supported. In this paper we propose an extension of type-theory with colored terms, color erasure and interpretation of colored types as predicates. The result is a more powerful type-theory: some definitions and proofs may be omitted as they become trivial, it becomes easier to program with precise types, and some parametricity results can be internalized.