Fariha Noor, Md Rashad Tanjim, M. J. Rahim, Md. Naimul Islam Suvon, Faria Karim Porna, Shabbir Ahmed, Md. Abdullah Al Kaioum, R. Rahman
求助PDF
{"title":"模糊逻辑在COVID-19患者ct扫描图像中的应用","authors":"Fariha Noor, Md Rashad Tanjim, M. J. Rahim, Md. Naimul Islam Suvon, Faria Karim Porna, Shabbir Ahmed, Md. Abdullah Al Kaioum, R. Rahman","doi":"10.1504/ijiids.2021.10039512","DOIUrl":null,"url":null,"abstract":"Image processing is crucial in any image analysis to determine the problem. If it is a medical area, a suitable image processing method becomes even more imperative to get as accurate results as possible. Due to the widespread outbreak of coronavirus disease 2019 (COVID-19), an infectious respiratory disease, it has become quite urgent that a reliable method for identification of the disease is sought. In this paper, we have segmented images with two different techniques, fuzzy c-means, and k-means clustering. Our images include CT-scan data and X-rays of both two categories. The first being the COVID-19 infected patients;the other being a collection of normal persons, and viral pneumonia infected persons. Among the two clustering techniques, the k-means performed better. Later, we trained our CNN model with the segmented images and raw images. Interestingly, the segmented images of CT-scan, as well as X-rays, are performing well in CNN classification rather than raw images. After applying fuzzy edge detection, the segmentation was improved. The f1-score for our model is 91% and the support is 89%. © 2021 Inderscience Enterprises Ltd.","PeriodicalId":39658,"journal":{"name":"International Journal of Intelligent Information and Database Systems","volume":"39 1","pages":"333-348"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of fuzzy logic on CT-scan images of COVID-19 patients\",\"authors\":\"Fariha Noor, Md Rashad Tanjim, M. J. Rahim, Md. Naimul Islam Suvon, Faria Karim Porna, Shabbir Ahmed, Md. Abdullah Al Kaioum, R. Rahman\",\"doi\":\"10.1504/ijiids.2021.10039512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image processing is crucial in any image analysis to determine the problem. If it is a medical area, a suitable image processing method becomes even more imperative to get as accurate results as possible. Due to the widespread outbreak of coronavirus disease 2019 (COVID-19), an infectious respiratory disease, it has become quite urgent that a reliable method for identification of the disease is sought. In this paper, we have segmented images with two different techniques, fuzzy c-means, and k-means clustering. Our images include CT-scan data and X-rays of both two categories. The first being the COVID-19 infected patients;the other being a collection of normal persons, and viral pneumonia infected persons. Among the two clustering techniques, the k-means performed better. Later, we trained our CNN model with the segmented images and raw images. Interestingly, the segmented images of CT-scan, as well as X-rays, are performing well in CNN classification rather than raw images. After applying fuzzy edge detection, the segmentation was improved. The f1-score for our model is 91% and the support is 89%. © 2021 Inderscience Enterprises Ltd.\",\"PeriodicalId\":39658,\"journal\":{\"name\":\"International Journal of Intelligent Information and Database Systems\",\"volume\":\"39 1\",\"pages\":\"333-348\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Information and Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijiids.2021.10039512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijiids.2021.10039512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
引用
批量引用
Application of fuzzy logic on CT-scan images of COVID-19 patients
Image processing is crucial in any image analysis to determine the problem. If it is a medical area, a suitable image processing method becomes even more imperative to get as accurate results as possible. Due to the widespread outbreak of coronavirus disease 2019 (COVID-19), an infectious respiratory disease, it has become quite urgent that a reliable method for identification of the disease is sought. In this paper, we have segmented images with two different techniques, fuzzy c-means, and k-means clustering. Our images include CT-scan data and X-rays of both two categories. The first being the COVID-19 infected patients;the other being a collection of normal persons, and viral pneumonia infected persons. Among the two clustering techniques, the k-means performed better. Later, we trained our CNN model with the segmented images and raw images. Interestingly, the segmented images of CT-scan, as well as X-rays, are performing well in CNN classification rather than raw images. After applying fuzzy edge detection, the segmentation was improved. The f1-score for our model is 91% and the support is 89%. © 2021 Inderscience Enterprises Ltd.