平衡模集{22n+1−1,22n, 22n−1}的二值变换器残数

E. K. Bankas, K. Gbolagade
{"title":"平衡模集{22n+1−1,22n, 22n−1}的二值变换器残数","authors":"E. K. Bankas, K. Gbolagade","doi":"10.1109/ICAWST.2013.6765435","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new moduli set {2<sup>2n+1</sup> - 1, 2<sup>2n</sup>;2<sup>2n - l</sup>} with its associated reverse converter. The proposed reverse converter is based on Mixed Radix Conversion (MRC). In addition to parallelizing and optimizing the MRC algorithm, the resulting architecture is further simplified in order to obtain a reverse converter that utilizes only 2 levels of Carry Save Adders and three Carry Propagate Adders. The proposed converter is purely adder based and memoryless. Our proposal has a delay of (10n + 4)t<sub>fa</sub> + 2t<sub>mUx</sub> with an area cost of (12n + 2)FAs and (2n)H As, which when expressed in terms of HA is (22n + 4), where FA, HA, and t<sub>fa</sub> represent Full Adder, Half Adder, and delay of a Full Adder, respectively. The proposed scheme is compared with state of the art similar dynamic range converters. Theoretically speaking, our proposal achieves about 62.3% hardware reduction and about 2.13% speed improvement when compared with the reverse converter for {2<sup>n</sup> + 1,2<sup>n</sup> 1, 2<sup>2n+1</sup> - 3, 2<sup>2n</sup> - 2}. Also, in comparison with the converter for {2<sup>n</sup> - 1, 2<sup>n</sup> - 1, 2<sup>2n+1</sup> - l}, the results indicate that, our proposal is about 17.05% faster, but requires about 7.83% more hardware resources. Further, the area time square (Δ<sub>T</sub><sup>2</sup>) metric indicates that our proposed converter is 62.3% and 24.77% better than the state of the art reverse converters for {2<sup>n</sup> + 1,2<sup>n</sup> - 1, 2<sup>2n+1</sup> - 3, 2<sup>2n</sup> - 2} and {2<sup>n</sup> - 1, 2<sup>n</sup> + 1, 2<sup>2n</sup>, 2<sup>2n+1</sup> - l} respectively.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"26 1","pages":"211-216"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A residue to binary converter for a balanced moduli set {22n+1 − 1, 22n, 22n − 1}\",\"authors\":\"E. K. Bankas, K. Gbolagade\",\"doi\":\"10.1109/ICAWST.2013.6765435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new moduli set {2<sup>2n+1</sup> - 1, 2<sup>2n</sup>;2<sup>2n - l</sup>} with its associated reverse converter. The proposed reverse converter is based on Mixed Radix Conversion (MRC). In addition to parallelizing and optimizing the MRC algorithm, the resulting architecture is further simplified in order to obtain a reverse converter that utilizes only 2 levels of Carry Save Adders and three Carry Propagate Adders. The proposed converter is purely adder based and memoryless. Our proposal has a delay of (10n + 4)t<sub>fa</sub> + 2t<sub>mUx</sub> with an area cost of (12n + 2)FAs and (2n)H As, which when expressed in terms of HA is (22n + 4), where FA, HA, and t<sub>fa</sub> represent Full Adder, Half Adder, and delay of a Full Adder, respectively. The proposed scheme is compared with state of the art similar dynamic range converters. Theoretically speaking, our proposal achieves about 62.3% hardware reduction and about 2.13% speed improvement when compared with the reverse converter for {2<sup>n</sup> + 1,2<sup>n</sup> 1, 2<sup>2n+1</sup> - 3, 2<sup>2n</sup> - 2}. Also, in comparison with the converter for {2<sup>n</sup> - 1, 2<sup>n</sup> - 1, 2<sup>2n+1</sup> - l}, the results indicate that, our proposal is about 17.05% faster, but requires about 7.83% more hardware resources. Further, the area time square (Δ<sub>T</sub><sup>2</sup>) metric indicates that our proposed converter is 62.3% and 24.77% better than the state of the art reverse converters for {2<sup>n</sup> + 1,2<sup>n</sup> - 1, 2<sup>2n+1</sup> - 3, 2<sup>2n</sup> - 2} and {2<sup>n</sup> - 1, 2<sup>n</sup> + 1, 2<sup>2n</sup>, 2<sup>2n+1</sup> - l} respectively.\",\"PeriodicalId\":68697,\"journal\":{\"name\":\"炎黄地理\",\"volume\":\"26 1\",\"pages\":\"211-216\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"炎黄地理\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2013.6765435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一个新的模集{22n+1 - 1,22n;22n - l}及其相关的反向变换器。所提出的反向转换器基于混合基数转换(MRC)。除了并行化和优化MRC算法外,还进一步简化了所得架构,以获得仅使用2级进位保存加法器和3级进位传播加法器的反向转换器。所提出的转换器是纯基于加法器和无存储器的。我们提出的延迟为(10n + 4)tfa + 2tmUx,面积成本为(12n + 2)FAs和(2n)H As,用HA表示时为(22n + 4),其中FA、HA和tfa分别表示全加法器、半加法器和全加法器的延迟。将该方案与现有的同类动态范围变换器进行了比较。从理论上讲,与{2n + 1,2n 1,22n +1 - 3,22n - 2}的反向变换器相比,我们的方案实现了约62.3%的硬件减少和约2.13%的速度提高。另外,与{2n - 1,2n - 1,22n +1 - l}的转换器相比,结果表明,我们的方案速度约为17.05%,但需要的硬件资源约为7.83%。此外,面积时间平方(ΔT2)指标表明,我们提出的转换器分别比{2n +1,2n - 1, 22n+1 - 3,22n - 2}和{2n - 1,2n +1, 22n, 22n+1 - 1}的最先进的反向转换器好62.3%和24.77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A residue to binary converter for a balanced moduli set {22n+1 − 1, 22n, 22n − 1}
In this paper, we propose a new moduli set {22n+1 - 1, 22n;22n - l} with its associated reverse converter. The proposed reverse converter is based on Mixed Radix Conversion (MRC). In addition to parallelizing and optimizing the MRC algorithm, the resulting architecture is further simplified in order to obtain a reverse converter that utilizes only 2 levels of Carry Save Adders and three Carry Propagate Adders. The proposed converter is purely adder based and memoryless. Our proposal has a delay of (10n + 4)tfa + 2tmUx with an area cost of (12n + 2)FAs and (2n)H As, which when expressed in terms of HA is (22n + 4), where FA, HA, and tfa represent Full Adder, Half Adder, and delay of a Full Adder, respectively. The proposed scheme is compared with state of the art similar dynamic range converters. Theoretically speaking, our proposal achieves about 62.3% hardware reduction and about 2.13% speed improvement when compared with the reverse converter for {2n + 1,2n 1, 22n+1 - 3, 22n - 2}. Also, in comparison with the converter for {2n - 1, 2n - 1, 22n+1 - l}, the results indicate that, our proposal is about 17.05% faster, but requires about 7.83% more hardware resources. Further, the area time square (ΔT2) metric indicates that our proposed converter is 62.3% and 24.77% better than the state of the art reverse converters for {2n + 1,2n - 1, 22n+1 - 3, 22n - 2} and {2n - 1, 2n + 1, 22n, 22n+1 - l} respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
784
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信