经典通道或量子通道群中的可访问映射

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Koorosh Sadri, F. Shahbeigi, Z. Puchała, K. Życzkowski
{"title":"经典通道或量子通道群中的可访问映射","authors":"Koorosh Sadri, F. Shahbeigi, Z. Puchała, K. Życzkowski","doi":"10.1142/S1230161222500020","DOIUrl":null,"url":null,"abstract":"We study the problem of accessibility in a set of classical and quantum channels admitting a group structure. Group properties of the set of channels, and the structure of the closure of the analyzed group [Formula: see text] plays a pivotal role in this regard. The set of all convex combinations of the group elements contains a subset of channels that are accessible by a dynamical semigroup. We demonstrate that accessible channels are determined by probability vectors of weights of a convex combination of the group elements, which depend neither on the dimension of the space on which the channels act, nor on the specific representation of the group. Investigating geometric properties of the set [Formula: see text] of accessible maps we show that this set is nonconvex, but it enjoys the star-shape property with respect to the uniform mixture of all elements of the group. We demonstrate that the set [Formula: see text] covers a positive volume in the polytope of all convex combinations of the elements of the group.","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"33 1","pages":"2250002:1-2250002:40"},"PeriodicalIF":1.3000,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accessible Maps in a Group of Classical or Quantum Channels\",\"authors\":\"Koorosh Sadri, F. Shahbeigi, Z. Puchała, K. Życzkowski\",\"doi\":\"10.1142/S1230161222500020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of accessibility in a set of classical and quantum channels admitting a group structure. Group properties of the set of channels, and the structure of the closure of the analyzed group [Formula: see text] plays a pivotal role in this regard. The set of all convex combinations of the group elements contains a subset of channels that are accessible by a dynamical semigroup. We demonstrate that accessible channels are determined by probability vectors of weights of a convex combination of the group elements, which depend neither on the dimension of the space on which the channels act, nor on the specific representation of the group. Investigating geometric properties of the set [Formula: see text] of accessible maps we show that this set is nonconvex, but it enjoys the star-shape property with respect to the uniform mixture of all elements of the group. We demonstrate that the set [Formula: see text] covers a positive volume in the polytope of all convex combinations of the elements of the group.\",\"PeriodicalId\":54681,\"journal\":{\"name\":\"Open Systems & Information Dynamics\",\"volume\":\"33 1\",\"pages\":\"2250002:1-2250002:40\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Systems & Information Dynamics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/S1230161222500020\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S1230161222500020","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了一组允许群结构的经典信道和量子信道的可达性问题。通道集合的群属性,以及所分析群的闭包结构[公式:见文]在这方面起着举足轻重的作用。群元素的所有凸组合的集合包含可由动态半群访问的通道子集。我们证明了可访问通道是由群元素的凸组合的权重的概率向量决定的,它既不依赖于通道所作用的空间的维度,也不依赖于群的特定表示。研究可达映射集合[公式:见文本]的几何性质,我们证明了这个集合是非凸的,但是对于群中所有元素的均匀混合,它具有星形性质。我们证明了集合[公式:见正文]在群中所有元素的凸组合的多面体中覆盖了一个正体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accessible Maps in a Group of Classical or Quantum Channels
We study the problem of accessibility in a set of classical and quantum channels admitting a group structure. Group properties of the set of channels, and the structure of the closure of the analyzed group [Formula: see text] plays a pivotal role in this regard. The set of all convex combinations of the group elements contains a subset of channels that are accessible by a dynamical semigroup. We demonstrate that accessible channels are determined by probability vectors of weights of a convex combination of the group elements, which depend neither on the dimension of the space on which the channels act, nor on the specific representation of the group. Investigating geometric properties of the set [Formula: see text] of accessible maps we show that this set is nonconvex, but it enjoys the star-shape property with respect to the uniform mixture of all elements of the group. We demonstrate that the set [Formula: see text] covers a positive volume in the polytope of all convex combinations of the elements of the group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Systems & Information Dynamics
Open Systems & Information Dynamics 工程技术-计算机:信息系统
CiteScore
1.40
自引率
12.50%
发文量
4
审稿时长
>12 weeks
期刊介绍: The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信