使用通口分形维数和10统计参数支持向量机对脑力任务相关的多类脑电信号进行分类

Abdullah Basuki Rahmat, K. Iramina
{"title":"使用通口分形维数和10统计参数支持向量机对脑力任务相关的多类脑电信号进行分类","authors":"Abdullah Basuki Rahmat, K. Iramina","doi":"10.1109/TENCON.2015.7372967","DOIUrl":null,"url":null,"abstract":"Nowadays, Not only the accuracy of a classification system but also a feature extraction method is an important matter in a Brain Computer Interface Application. In this paper, we investigated the multiclass classification of mental task using EEG signal. Higuchi Fractal Dimension and 10-Statistic Parameters were used as feature extraction method. The 10-statistic parameters are central tendency type that is, maximum value, minimum value, mean, standard deviation, median, mode, variance, first-quartile, third-quartile, interchange quartile. Multiclass Support Vector Machine with One-against-All strategy is applied to classify EEG signal related to the mental task. The result shows that the Multiclass SVM classifier with 1-against-All strategy using 10-Statistic Parameters has a higher accuracy when compared to Higuchi Fractal Dimension-SVM, Extreme Learning Machine, Back Propagation Neural Network, both of Support Vector Machine 1-versus-1 strategy and 1-versus-All strategy. The average accuracy ranging between 99.2% and 100% for 10-Statistic Parameters-SVM and HFD_SVM ranging from 60.22% to 91.91% were gained for five mental task classes.","PeriodicalId":22200,"journal":{"name":"TENCON 2015 - 2015 IEEE Region 10 Conference","volume":"141 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification of multiclass eeg signal related to mental task using higuchi fractal dimension and 10-Statistic Parameters - Support Vector Machine\",\"authors\":\"Abdullah Basuki Rahmat, K. Iramina\",\"doi\":\"10.1109/TENCON.2015.7372967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, Not only the accuracy of a classification system but also a feature extraction method is an important matter in a Brain Computer Interface Application. In this paper, we investigated the multiclass classification of mental task using EEG signal. Higuchi Fractal Dimension and 10-Statistic Parameters were used as feature extraction method. The 10-statistic parameters are central tendency type that is, maximum value, minimum value, mean, standard deviation, median, mode, variance, first-quartile, third-quartile, interchange quartile. Multiclass Support Vector Machine with One-against-All strategy is applied to classify EEG signal related to the mental task. The result shows that the Multiclass SVM classifier with 1-against-All strategy using 10-Statistic Parameters has a higher accuracy when compared to Higuchi Fractal Dimension-SVM, Extreme Learning Machine, Back Propagation Neural Network, both of Support Vector Machine 1-versus-1 strategy and 1-versus-All strategy. The average accuracy ranging between 99.2% and 100% for 10-Statistic Parameters-SVM and HFD_SVM ranging from 60.22% to 91.91% were gained for five mental task classes.\",\"PeriodicalId\":22200,\"journal\":{\"name\":\"TENCON 2015 - 2015 IEEE Region 10 Conference\",\"volume\":\"141 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2015 - 2015 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2015.7372967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2015 - 2015 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2015.7372967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

目前,在脑机接口应用中,分类系统的准确性和特征提取方法都是一个重要的问题。研究了利用脑电信号对心理任务进行多类分类的方法。采用Higuchi分形维数和10统计参数作为特征提取方法。10个统计参数为集中趋势型,即最大值、最小值、平均值、标准差、中位数、众数、方差、第一四分位数、第三四分位数、交换四分位数。采用一对全策略的多类支持向量机对与心理任务相关的脑电信号进行分类。结果表明,与Higuchi分形维支持向量机、极限学习机、反向传播神经网络、支持向量机1对1策略和1对所有策略相比,采用10个统计参数的1对全策略的多类支持向量机分类器具有更高的准确率。10-统计参数支持向量机和HFD_SVM对5个心理任务类的平均准确率分别为99.2% ~ 100%和60.22% ~ 91.91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of multiclass eeg signal related to mental task using higuchi fractal dimension and 10-Statistic Parameters - Support Vector Machine
Nowadays, Not only the accuracy of a classification system but also a feature extraction method is an important matter in a Brain Computer Interface Application. In this paper, we investigated the multiclass classification of mental task using EEG signal. Higuchi Fractal Dimension and 10-Statistic Parameters were used as feature extraction method. The 10-statistic parameters are central tendency type that is, maximum value, minimum value, mean, standard deviation, median, mode, variance, first-quartile, third-quartile, interchange quartile. Multiclass Support Vector Machine with One-against-All strategy is applied to classify EEG signal related to the mental task. The result shows that the Multiclass SVM classifier with 1-against-All strategy using 10-Statistic Parameters has a higher accuracy when compared to Higuchi Fractal Dimension-SVM, Extreme Learning Machine, Back Propagation Neural Network, both of Support Vector Machine 1-versus-1 strategy and 1-versus-All strategy. The average accuracy ranging between 99.2% and 100% for 10-Statistic Parameters-SVM and HFD_SVM ranging from 60.22% to 91.91% were gained for five mental task classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信