R的单位群注[X;S], 2

Ryuki Matsuda
{"title":"R的单位群注[X;S], 2","authors":"Ryuki Matsuda","doi":"10.5036/MJIU.34.17","DOIUrl":null,"url":null,"abstract":"Let R be a commutative ring, and let S be a commutative semigroup. We study a semigroup version of Karpilovsky's Problem (K, chapter 7, problem 9) concerning the unit group of a group ring. We give a preciser decomposition theorem for the unit group of a semigroup ring. This is a continuation of our (M3). Thus a submonoid S of a torsion-free abelian (additive) group is called a grading monoid (or a g-monoid). Throughout the paper we assume that S is non-zero. We consider the semigroup ring R(X;S) of S over a commutative ring R. We denote the unit group of S by H=H(S). We denote the nilradical of R by N=N(R), and let U=U(R) be the unit group of R. The group of units f=Σ ααXα of R(X;S) with Σ αα=1 is denoted by","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"32 1","pages":"17-21"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on the unit group of R[X;S], II\",\"authors\":\"Ryuki Matsuda\",\"doi\":\"10.5036/MJIU.34.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be a commutative ring, and let S be a commutative semigroup. We study a semigroup version of Karpilovsky's Problem (K, chapter 7, problem 9) concerning the unit group of a group ring. We give a preciser decomposition theorem for the unit group of a semigroup ring. This is a continuation of our (M3). Thus a submonoid S of a torsion-free abelian (additive) group is called a grading monoid (or a g-monoid). Throughout the paper we assume that S is non-zero. We consider the semigroup ring R(X;S) of S over a commutative ring R. We denote the unit group of S by H=H(S). We denote the nilradical of R by N=N(R), and let U=U(R) be the unit group of R. The group of units f=Σ ααXα of R(X;S) with Σ αα=1 is denoted by\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"32 1\",\"pages\":\"17-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/MJIU.34.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.34.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设R是可交换环,设S是可交换半群。研究了关于群环的单位群的Karpilovsky问题(K,第7章,第9题)的一个半群版本。给出了半群环的单位群的一个精确分解定理。这是我们(M3)的延续。因此,无扭转阿贝尔(加性)群的子单群S称为分级单群(或g-单群)。在整篇论文中,我们都假设S不为零。考虑交换环R上S的半群环R(X;S),用H=H(S)表示S的单位群。我们用N=N(R)表示R的零根,设U=U(R)为R的单位群。R(X;S)的单位群f=Σ ααXα, Σ αα=1表示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on the unit group of R[X;S], II
Let R be a commutative ring, and let S be a commutative semigroup. We study a semigroup version of Karpilovsky's Problem (K, chapter 7, problem 9) concerning the unit group of a group ring. We give a preciser decomposition theorem for the unit group of a semigroup ring. This is a continuation of our (M3). Thus a submonoid S of a torsion-free abelian (additive) group is called a grading monoid (or a g-monoid). Throughout the paper we assume that S is non-zero. We consider the semigroup ring R(X;S) of S over a commutative ring R. We denote the unit group of S by H=H(S). We denote the nilradical of R by N=N(R), and let U=U(R) be the unit group of R. The group of units f=Σ ααXα of R(X;S) with Σ αα=1 is denoted by
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信