基于边界提示的双光圈相机离焦网络多图像深度研究

Gwangmo Song, Yumee Kim, K. Chun, Kyoung Mu Lee
{"title":"基于边界提示的双光圈相机离焦网络多图像深度研究","authors":"Gwangmo Song, Yumee Kim, K. Chun, Kyoung Mu Lee","doi":"10.1109/ICASSP40776.2020.9054346","DOIUrl":null,"url":null,"abstract":"In this paper, we estimate depth information using two defocused images from dual aperture camera. Recent advances in deep learning techniques have increased the accuracy of depth estimation. Besides, methods of using a defocused image in which an object is blurred according to a distance from a camera have been widely studied. We further improve the accuracy of the depth estimation by training the network using two images with different degrees of depth-of-field. Using images taken with different apertures for the same scene, we can determine the degree of blur in an image more accurately. In this work, we propose a novel deep convolutional network that estimates depth map using dual aperture images based on boundary cue. Our proposed method achieves state-of-the-art performance on a synthetically modified NYU-v2 dataset. In addition, we built a new camera using fast variable apertures to build a test environment in the real world. In particular, we collected a new dataset which consists of real world vehicle driving scenes. Our proposed work shows excellent performance in the new dataset.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"22 1","pages":"2293-2297"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multi Image Depth from Defocus Network with Boundary Cue for Dual Aperture Camera\",\"authors\":\"Gwangmo Song, Yumee Kim, K. Chun, Kyoung Mu Lee\",\"doi\":\"10.1109/ICASSP40776.2020.9054346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we estimate depth information using two defocused images from dual aperture camera. Recent advances in deep learning techniques have increased the accuracy of depth estimation. Besides, methods of using a defocused image in which an object is blurred according to a distance from a camera have been widely studied. We further improve the accuracy of the depth estimation by training the network using two images with different degrees of depth-of-field. Using images taken with different apertures for the same scene, we can determine the degree of blur in an image more accurately. In this work, we propose a novel deep convolutional network that estimates depth map using dual aperture images based on boundary cue. Our proposed method achieves state-of-the-art performance on a synthetically modified NYU-v2 dataset. In addition, we built a new camera using fast variable apertures to build a test environment in the real world. In particular, we collected a new dataset which consists of real world vehicle driving scenes. Our proposed work shows excellent performance in the new dataset.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"22 1\",\"pages\":\"2293-2297\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9054346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9054346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文利用双光圈相机的两幅离焦图像估计深度信息。深度学习技术的最新进展提高了深度估计的准确性。此外,利用离焦图像的方法也得到了广泛的研究,其中物体根据与相机的距离模糊。我们通过使用两幅不同景深的图像来训练网络,进一步提高了深度估计的准确性。使用不同光圈对同一场景拍摄的图像,我们可以更准确地确定图像中的模糊程度。在这项工作中,我们提出了一种新的深度卷积网络,该网络使用基于边界线索的双孔径图像估计深度图。我们提出的方法在综合修改的NYU-v2数据集上实现了最先进的性能。此外,我们构建了一个使用快速可变光圈的新相机,以在现实世界中构建测试环境。特别是,我们收集了一个由真实世界车辆驾驶场景组成的新数据集。我们提出的工作在新的数据集中表现出优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi Image Depth from Defocus Network with Boundary Cue for Dual Aperture Camera
In this paper, we estimate depth information using two defocused images from dual aperture camera. Recent advances in deep learning techniques have increased the accuracy of depth estimation. Besides, methods of using a defocused image in which an object is blurred according to a distance from a camera have been widely studied. We further improve the accuracy of the depth estimation by training the network using two images with different degrees of depth-of-field. Using images taken with different apertures for the same scene, we can determine the degree of blur in an image more accurately. In this work, we propose a novel deep convolutional network that estimates depth map using dual aperture images based on boundary cue. Our proposed method achieves state-of-the-art performance on a synthetically modified NYU-v2 dataset. In addition, we built a new camera using fast variable apertures to build a test environment in the real world. In particular, we collected a new dataset which consists of real world vehicle driving scenes. Our proposed work shows excellent performance in the new dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信