子结构技术在有限元环境下复合金属泡沫中的应用

IF 1.3 Q3 ENGINEERING, MECHANICAL
Márió Kovács, Balázs Pere, I. Orbulov
{"title":"子结构技术在有限元环境下复合金属泡沫中的应用","authors":"Márió Kovács, Balázs Pere, I. Orbulov","doi":"10.3311/ppme.22313","DOIUrl":null,"url":null,"abstract":"The presented work focuses on the development of a novel method that can numerically describe the properties of metal matrix syntactic foam (MMSF) with low memory requirements and short computational times without losing the properties of the interior structure. In this paper, we propose a novel method that avoids using the homogenization technique and instead rearranges stiffness matrices and constructs specific substructures to perform the overall construction. The two-dimensional cases are discussed in order to focus on the methodology itself. First, the reductions and structural design with solid mesh structures were performed, and then the model was applied on structures filled with iron hollow spheres. So far, the method has been used to evaluate small deformations to see how suitable the subspace technique is for describing metal foams. Aluminum was used as the matrix material, as it is one of the most common materials for MMSFs. The optimal parameters were searched that resulted in the shortest running time for the given construction. Since in the proposed substructure technique only the displacement values at the boundary points are computed, a back-calculation step for each selected substructure was performed to see the interior deformations in the vicinity of an iron hollow sphere.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Substructure Techniques to Syntactic Metal Foams in a Finite Element Environment\",\"authors\":\"Márió Kovács, Balázs Pere, I. Orbulov\",\"doi\":\"10.3311/ppme.22313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presented work focuses on the development of a novel method that can numerically describe the properties of metal matrix syntactic foam (MMSF) with low memory requirements and short computational times without losing the properties of the interior structure. In this paper, we propose a novel method that avoids using the homogenization technique and instead rearranges stiffness matrices and constructs specific substructures to perform the overall construction. The two-dimensional cases are discussed in order to focus on the methodology itself. First, the reductions and structural design with solid mesh structures were performed, and then the model was applied on structures filled with iron hollow spheres. So far, the method has been used to evaluate small deformations to see how suitable the subspace technique is for describing metal foams. Aluminum was used as the matrix material, as it is one of the most common materials for MMSFs. The optimal parameters were searched that resulted in the shortest running time for the given construction. Since in the proposed substructure technique only the displacement values at the boundary points are computed, a back-calculation step for each selected substructure was performed to see the interior deformations in the vicinity of an iron hollow sphere.\",\"PeriodicalId\":43630,\"journal\":{\"name\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppme.22313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppme.22313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文的工作重点是开发一种新的方法,该方法可以在不失去内部结构特性的情况下,以低内存要求和短计算时间来数值描述金属基质复合泡沫(MMSF)的特性。在本文中,我们提出了一种新的方法,避免使用均匀化技术,而是重新排列刚度矩阵并构建特定的子结构来执行整体构建。讨论二维案例是为了关注方法论本身。首先进行了实体网格结构的简化和结构设计,然后将该模型应用于填充铁空心球的结构。到目前为止,该方法已用于评估小变形,以了解子空间技术对描述金属泡沫的适用性。采用铝作为基体材料,因为铝是mmsf最常用的材料之一。在给定的结构中,搜索最优参数,使其运行时间最短。由于在提出的子结构技术中,只计算边界点处的位移值,因此对每个选定的子结构执行反算步骤,以查看铁空心球附近的内部变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Substructure Techniques to Syntactic Metal Foams in a Finite Element Environment
The presented work focuses on the development of a novel method that can numerically describe the properties of metal matrix syntactic foam (MMSF) with low memory requirements and short computational times without losing the properties of the interior structure. In this paper, we propose a novel method that avoids using the homogenization technique and instead rearranges stiffness matrices and constructs specific substructures to perform the overall construction. The two-dimensional cases are discussed in order to focus on the methodology itself. First, the reductions and structural design with solid mesh structures were performed, and then the model was applied on structures filled with iron hollow spheres. So far, the method has been used to evaluate small deformations to see how suitable the subspace technique is for describing metal foams. Aluminum was used as the matrix material, as it is one of the most common materials for MMSFs. The optimal parameters were searched that resulted in the shortest running time for the given construction. Since in the proposed substructure technique only the displacement values at the boundary points are computed, a back-calculation step for each selected substructure was performed to see the interior deformations in the vicinity of an iron hollow sphere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
20 weeks
期刊介绍: Periodica Polytechnica is a publisher of the Budapest University of Technology and Economics. It publishes seven international journals (Architecture, Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Social and Management Sciences, Transportation Engineering). The journals have free electronic versions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信