{"title":"食用无花果(Ficus carica)粗叶提取物在单细胞凝胶电泳(SCGE)/彗星分析中防止己烯雌酚(DES)诱导的DNA链断裂:文献综述和中试研究","authors":"Alrena V. Lightbourn, Ronald D. Thomas","doi":"10.35248/0975-0851.19.11.389","DOIUrl":null,"url":null,"abstract":"Fig (Ficus carica) trees are among the oldest plants on earth. The chemopreventive properties of constituent polyphenols and fiber that implicate figs in having a functional role in averting cancer have not been fully elucidated. We therefore hypothesized that fig leaf extract would inhibit (or attenuate) DES-induced DNA single-strand breakage in MCF10A human breast epithelial cells. To test this hypothesis, MCF10A cells were treated with DES (1, 10, 100 μM), crude fig leaf extract (5, 10, 15 μL), or concomitant doses of DES (100 μM)/fig leaf extract (5, 10, 15 μL). The cells were analyzed for DNA strand breakage using the SCGE/COMET assay with mean olive tail moment as a marker of DNA damage. DES induced DNA strand breaks at all treatment levels compared to DMSO and non-treatment controls. DES at concentrations of 1, 10, and 100 μM produced mean olive tail moments of 1.2082 (177.6%), 1.2702 (186.7%), and 1.1275 (165.7%), respectively, which were statistically significantly (p<0.05) higher than the DMSO control value (0.6803). Exposure to fig leaf extract produced no DNA damage. Rather, a desirable dose-dependent reduction in DES-induced DNA strand breaks was observed. Composite treatment of MCF10A cells with DES and fig leaf extract attenuated DES-induced DNA strand breaks. Taken together, these results suggest a potential mechanism for cancer chemoprevention. Additional studies are necessary to identify relevant active ingredients, confirm the mechanism of action, and further elucidate the therapeutic potential of fig leaf extract for early-stage breast cancer chemoprevention.","PeriodicalId":15184,"journal":{"name":"Journal of Bioequivalence & Bioavailability","volume":"42 1","pages":"19 - 28"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Crude Edible Fig (Ficus carica) Leaf Extract Prevents Diethylstilbestrol (DES)-Induced DNA Strand Breaks in Single-Cell Gel Electrophoresis (SCGE)/Comet Assay: Literature Review and Pilot Study\",\"authors\":\"Alrena V. Lightbourn, Ronald D. Thomas\",\"doi\":\"10.35248/0975-0851.19.11.389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fig (Ficus carica) trees are among the oldest plants on earth. The chemopreventive properties of constituent polyphenols and fiber that implicate figs in having a functional role in averting cancer have not been fully elucidated. We therefore hypothesized that fig leaf extract would inhibit (or attenuate) DES-induced DNA single-strand breakage in MCF10A human breast epithelial cells. To test this hypothesis, MCF10A cells were treated with DES (1, 10, 100 μM), crude fig leaf extract (5, 10, 15 μL), or concomitant doses of DES (100 μM)/fig leaf extract (5, 10, 15 μL). The cells were analyzed for DNA strand breakage using the SCGE/COMET assay with mean olive tail moment as a marker of DNA damage. DES induced DNA strand breaks at all treatment levels compared to DMSO and non-treatment controls. DES at concentrations of 1, 10, and 100 μM produced mean olive tail moments of 1.2082 (177.6%), 1.2702 (186.7%), and 1.1275 (165.7%), respectively, which were statistically significantly (p<0.05) higher than the DMSO control value (0.6803). Exposure to fig leaf extract produced no DNA damage. Rather, a desirable dose-dependent reduction in DES-induced DNA strand breaks was observed. Composite treatment of MCF10A cells with DES and fig leaf extract attenuated DES-induced DNA strand breaks. Taken together, these results suggest a potential mechanism for cancer chemoprevention. Additional studies are necessary to identify relevant active ingredients, confirm the mechanism of action, and further elucidate the therapeutic potential of fig leaf extract for early-stage breast cancer chemoprevention.\",\"PeriodicalId\":15184,\"journal\":{\"name\":\"Journal of Bioequivalence & Bioavailability\",\"volume\":\"42 1\",\"pages\":\"19 - 28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioequivalence & Bioavailability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35248/0975-0851.19.11.389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioequivalence & Bioavailability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35248/0975-0851.19.11.389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crude Edible Fig (Ficus carica) Leaf Extract Prevents Diethylstilbestrol (DES)-Induced DNA Strand Breaks in Single-Cell Gel Electrophoresis (SCGE)/Comet Assay: Literature Review and Pilot Study
Fig (Ficus carica) trees are among the oldest plants on earth. The chemopreventive properties of constituent polyphenols and fiber that implicate figs in having a functional role in averting cancer have not been fully elucidated. We therefore hypothesized that fig leaf extract would inhibit (or attenuate) DES-induced DNA single-strand breakage in MCF10A human breast epithelial cells. To test this hypothesis, MCF10A cells were treated with DES (1, 10, 100 μM), crude fig leaf extract (5, 10, 15 μL), or concomitant doses of DES (100 μM)/fig leaf extract (5, 10, 15 μL). The cells were analyzed for DNA strand breakage using the SCGE/COMET assay with mean olive tail moment as a marker of DNA damage. DES induced DNA strand breaks at all treatment levels compared to DMSO and non-treatment controls. DES at concentrations of 1, 10, and 100 μM produced mean olive tail moments of 1.2082 (177.6%), 1.2702 (186.7%), and 1.1275 (165.7%), respectively, which were statistically significantly (p<0.05) higher than the DMSO control value (0.6803). Exposure to fig leaf extract produced no DNA damage. Rather, a desirable dose-dependent reduction in DES-induced DNA strand breaks was observed. Composite treatment of MCF10A cells with DES and fig leaf extract attenuated DES-induced DNA strand breaks. Taken together, these results suggest a potential mechanism for cancer chemoprevention. Additional studies are necessary to identify relevant active ingredients, confirm the mechanism of action, and further elucidate the therapeutic potential of fig leaf extract for early-stage breast cancer chemoprevention.