{"title":"离散奇异Radon变换的稀疏界","authors":"T. Anderson, Bingyang Hu, J. Roos","doi":"10.4064/cm8296-8-2020","DOIUrl":null,"url":null,"abstract":"We show that discrete singular Radon transforms along a certain class of polynomial mappings $P:\\mathbb{Z}^d\\to \\mathbb{Z}^n$ satisfy sparse bounds. For $n=d=1$ we can handle all polynomials. In higher dimensions, we pose restrictions on the admissible polynomial mappings stemming from a combination of interacting geometric, analytic and number-theoretic obstacles.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse bounds for\\ndiscrete singular Radon transforms\",\"authors\":\"T. Anderson, Bingyang Hu, J. Roos\",\"doi\":\"10.4064/cm8296-8-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that discrete singular Radon transforms along a certain class of polynomial mappings $P:\\\\mathbb{Z}^d\\\\to \\\\mathbb{Z}^n$ satisfy sparse bounds. For $n=d=1$ we can handle all polynomials. In higher dimensions, we pose restrictions on the admissible polynomial mappings stemming from a combination of interacting geometric, analytic and number-theoretic obstacles.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8296-8-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/cm8296-8-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sparse bounds for
discrete singular Radon transforms
We show that discrete singular Radon transforms along a certain class of polynomial mappings $P:\mathbb{Z}^d\to \mathbb{Z}^n$ satisfy sparse bounds. For $n=d=1$ we can handle all polynomials. In higher dimensions, we pose restrictions on the admissible polynomial mappings stemming from a combination of interacting geometric, analytic and number-theoretic obstacles.