黎曼-刘维尔分数积分的一般形式的积分不等式

IF 0.5 Q4 EDUCATION & EDUCATIONAL RESEARCH
Ebru Y¨uksel, Erhan Deniz, A. Akdemir
{"title":"黎曼-刘维尔分数积分的一般形式的积分不等式","authors":"Ebru Y¨uksel, Erhan Deniz, A. Akdemir","doi":"10.47443/ejm.2022.011","DOIUrl":null,"url":null,"abstract":"The primary goal of this paper is to obtain Hadamard type integral inequalities for a general fractional integral operator. New upper bounds of Hadamard type for a class of m -convex functions are gained with the help of the ω -Riemann-Liouville integral operator. For some special cases, the effectiveness of the procured results are demonstrated by obtaining some particular inequalities.","PeriodicalId":29770,"journal":{"name":"International Electronic Journal of Mathematics Education","volume":"62 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral inequalities via general form of Riemann-Liouville fractional integrals\",\"authors\":\"Ebru Y¨uksel, Erhan Deniz, A. Akdemir\",\"doi\":\"10.47443/ejm.2022.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary goal of this paper is to obtain Hadamard type integral inequalities for a general fractional integral operator. New upper bounds of Hadamard type for a class of m -convex functions are gained with the help of the ω -Riemann-Liouville integral operator. For some special cases, the effectiveness of the procured results are demonstrated by obtaining some particular inequalities.\",\"PeriodicalId\":29770,\"journal\":{\"name\":\"International Electronic Journal of Mathematics Education\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Mathematics Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/ejm.2022.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Mathematics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/ejm.2022.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是得到一般分数阶积分算子的Hadamard型积分不等式。利用ω -Riemann-Liouville积分算子,得到了一类m -凸函数的新的Hadamard型上界。对于一些特殊情况,通过得到一些特殊的不等式,证明了所得结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral inequalities via general form of Riemann-Liouville fractional integrals
The primary goal of this paper is to obtain Hadamard type integral inequalities for a general fractional integral operator. New upper bounds of Hadamard type for a class of m -convex functions are gained with the help of the ω -Riemann-Liouville integral operator. For some special cases, the effectiveness of the procured results are demonstrated by obtaining some particular inequalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信