自适应小波基下混合层的数值模拟

Kai Schneider , Marie Farge
{"title":"自适应小波基下混合层的数值模拟","authors":"Kai Schneider ,&nbsp;Marie Farge","doi":"10.1016/S1287-4620(00)00106-X","DOIUrl":null,"url":null,"abstract":"<div><p>This note presents an adaptive wavelet method to compute two-dimensional turbulent flows. The Navier–Stokes equations in vorticity–velocity form are discretized using a Petrov–Galerkin scheme. The vorticity field is developed into an orthogonal wavelet series where only the most significant coefficients are retained. The testfunctions are adapted to the linear part of the equation so that the resulting stiffness matrix turns out to be the identity. The nonlinear term is evaluated on a locally refined grid in physical space. This numerical scheme is applied to simulate a temporally developing mixing layer. A comparison with a classical pseudo-spectral method is used for validation of the new method. The results show that the formation of Kelvin–Helmholtz vortices is well captured and all scales of the flow are well represented.</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"328 3","pages":"Pages 263-269"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)00106-X","citationCount":"32","resultStr":"{\"title\":\"Numerical simulation of a mixing layer in an adaptive wavelet basis\",\"authors\":\"Kai Schneider ,&nbsp;Marie Farge\",\"doi\":\"10.1016/S1287-4620(00)00106-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This note presents an adaptive wavelet method to compute two-dimensional turbulent flows. The Navier–Stokes equations in vorticity–velocity form are discretized using a Petrov–Galerkin scheme. The vorticity field is developed into an orthogonal wavelet series where only the most significant coefficients are retained. The testfunctions are adapted to the linear part of the equation so that the resulting stiffness matrix turns out to be the identity. The nonlinear term is evaluated on a locally refined grid in physical space. This numerical scheme is applied to simulate a temporally developing mixing layer. A comparison with a classical pseudo-spectral method is used for validation of the new method. The results show that the formation of Kelvin–Helmholtz vortices is well captured and all scales of the flow are well represented.</p></div>\",\"PeriodicalId\":100303,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"volume\":\"328 3\",\"pages\":\"Pages 263-269\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1287-4620(00)00106-X\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S128746200000106X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S128746200000106X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

本文提出了一种计算二维湍流的自适应小波方法。采用Petrov-Galerkin格式对涡速形式的Navier-Stokes方程进行离散化。涡度场被发展成一个只保留最显著系数的正交小波序列。测试函数适用于方程的线性部分,因此得到的刚度矩阵是恒等矩阵。非线性项在物理空间的局部细化网格上求值。该数值格式用于模拟一个随时间发展的混合层。通过与经典伪谱方法的比较,验证了新方法的有效性。结果表明,该方法能很好地捕捉到开尔文-亥姆霍兹涡的形成过程,并能很好地表示气流的各个尺度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation of a mixing layer in an adaptive wavelet basis

This note presents an adaptive wavelet method to compute two-dimensional turbulent flows. The Navier–Stokes equations in vorticity–velocity form are discretized using a Petrov–Galerkin scheme. The vorticity field is developed into an orthogonal wavelet series where only the most significant coefficients are retained. The testfunctions are adapted to the linear part of the equation so that the resulting stiffness matrix turns out to be the identity. The nonlinear term is evaluated on a locally refined grid in physical space. This numerical scheme is applied to simulate a temporally developing mixing layer. A comparison with a classical pseudo-spectral method is used for validation of the new method. The results show that the formation of Kelvin–Helmholtz vortices is well captured and all scales of the flow are well represented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信