{"title":"三维仿射几何中曲面的不变量","authors":"O. Arnaldsson, F. Valiquette","doi":"10.3842/SIGMA.2021.033","DOIUrl":null,"url":null,"abstract":"Using the method of moving frames we analyze the algebra of differential invariants for surfaces in three-dimensional affine geometry. For elliptic, hyperbolic, and parabolic points, we show that if the algebra of differential invariants in non-trivial, then it is generically generated by a single invariant.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Invariants of Surfaces in Three-Dimensional Affine Geometry\",\"authors\":\"O. Arnaldsson, F. Valiquette\",\"doi\":\"10.3842/SIGMA.2021.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the method of moving frames we analyze the algebra of differential invariants for surfaces in three-dimensional affine geometry. For elliptic, hyperbolic, and parabolic points, we show that if the algebra of differential invariants in non-trivial, then it is generically generated by a single invariant.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/SIGMA.2021.033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/SIGMA.2021.033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Invariants of Surfaces in Three-Dimensional Affine Geometry
Using the method of moving frames we analyze the algebra of differential invariants for surfaces in three-dimensional affine geometry. For elliptic, hyperbolic, and parabolic points, we show that if the algebra of differential invariants in non-trivial, then it is generically generated by a single invariant.