{"title":"亚热带水库斑马贻贝(Dreissena polymorpha)繁殖体压力的空间变化与繁殖","authors":"Thayer C. Hallidayschult, J. Beyer, D. Hambright","doi":"10.3391/AI.2021.16.1.07","DOIUrl":null,"url":null,"abstract":"Zebra mussels (Dreissena polymorpha) are one of the most economically and ecologically disruptive aquatic invasive species in North America, where they damage infrastructure and alter ecological processes. Understanding zebra mussel propagule pressure and establishment is essential for predicting expansion into subtropical lakes and reservoirs. Key water quality parameters, such as temperature, water clarity, dissolved oxygen, and primary productivity have been found to play major roles in these processes. To test if environmental variation affected zebra mussel propagule pressure and establishment within a large, subtropical lake, we measured zebra mussel larval (veliger) abundances in the water column and post-veliger abundances on hard surfaces and quantified water quality during 2011–2015 at six sites spanning 32.8 km in Lake Texoma, OK-TX which differed markedly in salinity, water clarity, and algal abundances. We found that densities of both life stages were lower at western sites with lower water clarity, higher salinity, and higher productivity. Additionally, higher numbers of zebra mussel post-veligers accrued on the undersides of deeper surfaces, suggesting preference for lower temperatures and refuge from predators. Our results suggest that in habitats that are particularly stressful for zebra mussels, water quality predicts propagule pressure and establishment of zebra mussels across a lake, emphasizing the need to consider environmental heterogeneity within large lakes when predicting the potential range and impact of this cosmopolitan invader.","PeriodicalId":8119,"journal":{"name":"Aquatic Invasions","volume":"233 1","pages":"94-112"},"PeriodicalIF":2.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Spatial variation in propagule pressure and establishment of zebra mussels (Dreissena polymorpha) within a subtropical reservoir\",\"authors\":\"Thayer C. Hallidayschult, J. Beyer, D. Hambright\",\"doi\":\"10.3391/AI.2021.16.1.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zebra mussels (Dreissena polymorpha) are one of the most economically and ecologically disruptive aquatic invasive species in North America, where they damage infrastructure and alter ecological processes. Understanding zebra mussel propagule pressure and establishment is essential for predicting expansion into subtropical lakes and reservoirs. Key water quality parameters, such as temperature, water clarity, dissolved oxygen, and primary productivity have been found to play major roles in these processes. To test if environmental variation affected zebra mussel propagule pressure and establishment within a large, subtropical lake, we measured zebra mussel larval (veliger) abundances in the water column and post-veliger abundances on hard surfaces and quantified water quality during 2011–2015 at six sites spanning 32.8 km in Lake Texoma, OK-TX which differed markedly in salinity, water clarity, and algal abundances. We found that densities of both life stages were lower at western sites with lower water clarity, higher salinity, and higher productivity. Additionally, higher numbers of zebra mussel post-veligers accrued on the undersides of deeper surfaces, suggesting preference for lower temperatures and refuge from predators. Our results suggest that in habitats that are particularly stressful for zebra mussels, water quality predicts propagule pressure and establishment of zebra mussels across a lake, emphasizing the need to consider environmental heterogeneity within large lakes when predicting the potential range and impact of this cosmopolitan invader.\",\"PeriodicalId\":8119,\"journal\":{\"name\":\"Aquatic Invasions\",\"volume\":\"233 1\",\"pages\":\"94-112\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Invasions\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3391/AI.2021.16.1.07\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Invasions","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3391/AI.2021.16.1.07","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Spatial variation in propagule pressure and establishment of zebra mussels (Dreissena polymorpha) within a subtropical reservoir
Zebra mussels (Dreissena polymorpha) are one of the most economically and ecologically disruptive aquatic invasive species in North America, where they damage infrastructure and alter ecological processes. Understanding zebra mussel propagule pressure and establishment is essential for predicting expansion into subtropical lakes and reservoirs. Key water quality parameters, such as temperature, water clarity, dissolved oxygen, and primary productivity have been found to play major roles in these processes. To test if environmental variation affected zebra mussel propagule pressure and establishment within a large, subtropical lake, we measured zebra mussel larval (veliger) abundances in the water column and post-veliger abundances on hard surfaces and quantified water quality during 2011–2015 at six sites spanning 32.8 km in Lake Texoma, OK-TX which differed markedly in salinity, water clarity, and algal abundances. We found that densities of both life stages were lower at western sites with lower water clarity, higher salinity, and higher productivity. Additionally, higher numbers of zebra mussel post-veligers accrued on the undersides of deeper surfaces, suggesting preference for lower temperatures and refuge from predators. Our results suggest that in habitats that are particularly stressful for zebra mussels, water quality predicts propagule pressure and establishment of zebra mussels across a lake, emphasizing the need to consider environmental heterogeneity within large lakes when predicting the potential range and impact of this cosmopolitan invader.
期刊介绍:
Aquatic Invasions is an open access, peer-reviewed international journal focusing on academic research of biological invasions in both inland and coastal water ecosystems from around the world.
It was established in 2006 as initiative of the International Society of Limnology (SIL) Working Group on Aquatic Invasive Species (WGAIS) with start-up funding from the European Commission Sixth Framework Programme for Research and Technological Development Integrated Project ALARM.
Aquatic Invasions is an official journal of International Association for Open Knowledge on Invasive Alien Species (INVASIVESNET).
Aquatic Invasions provides a forum for professionals involved in research of aquatic non-native species, including a focus on the following:
• Patterns of non-native species dispersal, including range extensions with global change
• Trends in new introductions and establishment of non-native species
• Population dynamics of non-native species
• Ecological and evolutionary impacts of non-native species
• Behaviour of invasive and associated native species in invaded areas
• Prediction of new invasions
• Advances in non-native species identification and taxonomy