直接求解$z''(t)=g(t,z,z')$的改进龙格-库塔公式

Kasim Hussain, F. Ismail
{"title":"直接求解$z''(t)=g(t,z,z')$的改进龙格-库塔公式","authors":"Kasim Hussain, F. Ismail","doi":"10.12732/IJAM.V33I1.3","DOIUrl":null,"url":null,"abstract":"This paper deals with the derivation of an explicit two-stage thirdorder Improved Runge-Kutta Nyström (IRKNG) method for directly solving general second order ordinary differential equations (ODE). This method is twostep and the number of functions to be evaluated per step is less via comparsion to the existing RK methods. Numerical outcomes are offered to show the validity and competency of the newly IRKNG method as comparison with the general RKN and RK techniques. AMS Subject Classification: 65L05, 65l06","PeriodicalId":14365,"journal":{"name":"International journal of pure and applied mathematics","volume":"171 1","pages":"27"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NEW IMPROVED RUNGE-KUTTA FORMULA FOR DIRECTLY SOLVING $z''(t)=g(t,z,z')$\",\"authors\":\"Kasim Hussain, F. Ismail\",\"doi\":\"10.12732/IJAM.V33I1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the derivation of an explicit two-stage thirdorder Improved Runge-Kutta Nyström (IRKNG) method for directly solving general second order ordinary differential equations (ODE). This method is twostep and the number of functions to be evaluated per step is less via comparsion to the existing RK methods. Numerical outcomes are offered to show the validity and competency of the newly IRKNG method as comparison with the general RKN and RK techniques. AMS Subject Classification: 65L05, 65l06\",\"PeriodicalId\":14365,\"journal\":{\"name\":\"International journal of pure and applied mathematics\",\"volume\":\"171 1\",\"pages\":\"27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of pure and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12732/IJAM.V33I1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pure and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/IJAM.V33I1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了直接求解一般二阶常微分方程的显式两阶改进Runge-Kutta Nyström (IRKNG)方法的推导。该方法分为两步,与现有的RK方法相比,每步需要评估的函数数量较少。数值结果表明,与一般的RKN和RK方法相比,IRKNG方法是有效的。学科分类:65L05、65l06
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A NEW IMPROVED RUNGE-KUTTA FORMULA FOR DIRECTLY SOLVING $z''(t)=g(t,z,z')$
This paper deals with the derivation of an explicit two-stage thirdorder Improved Runge-Kutta Nyström (IRKNG) method for directly solving general second order ordinary differential equations (ODE). This method is twostep and the number of functions to be evaluated per step is less via comparsion to the existing RK methods. Numerical outcomes are offered to show the validity and competency of the newly IRKNG method as comparison with the general RKN and RK techniques. AMS Subject Classification: 65L05, 65l06
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信