非标准随机阶分支随机游走集的暂态和递归性

IF 1.5 Q2 PHYSICS, MATHEMATICAL
Tom Hutchcroft
{"title":"非标准随机阶分支随机游走集的暂态和递归性","authors":"Tom Hutchcroft","doi":"10.1214/21-aihp1186","DOIUrl":null,"url":null,"abstract":"We study how the recurrence and transience of space-time sets for a branching random walk on a graph depends on the offspring distribution. Here, we say that a space-time set $A$ is recurrent if it is visited infinitely often almost surely on the event that the branching random walk survives forever, and say that $A$ is transient if it is visited at most finitely often almost surely. We prove that if $\\mu$ and $\\nu$ are supercritical offspring distributions with means $\\bar \\mu < \\bar \\nu$ then every space-time set that is recurrent with respect to the offspring distribution $\\mu$ is also recurrent with respect to the offspring distribution $\\nu$ and similarly that every space-time set that is transient with respect to the offspring distribution $\\nu$ is also transient with respect to the offspring distribution $\\mu$. To prove this, we introduce a new order on probability measures that we call the germ order and prove more generally that the same result holds whenever $\\mu$ is smaller than $\\nu$ in the germ order. Our work is inspired by the work of Johnson and Junge (AIHP 2018), who used related stochastic orders to study the frog model.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Transience and recurrence of sets for branching random walk via non-standard stochastic orders\",\"authors\":\"Tom Hutchcroft\",\"doi\":\"10.1214/21-aihp1186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study how the recurrence and transience of space-time sets for a branching random walk on a graph depends on the offspring distribution. Here, we say that a space-time set $A$ is recurrent if it is visited infinitely often almost surely on the event that the branching random walk survives forever, and say that $A$ is transient if it is visited at most finitely often almost surely. We prove that if $\\\\mu$ and $\\\\nu$ are supercritical offspring distributions with means $\\\\bar \\\\mu < \\\\bar \\\\nu$ then every space-time set that is recurrent with respect to the offspring distribution $\\\\mu$ is also recurrent with respect to the offspring distribution $\\\\nu$ and similarly that every space-time set that is transient with respect to the offspring distribution $\\\\nu$ is also transient with respect to the offspring distribution $\\\\mu$. To prove this, we introduce a new order on probability measures that we call the germ order and prove more generally that the same result holds whenever $\\\\mu$ is smaller than $\\\\nu$ in the germ order. Our work is inspired by the work of Johnson and Junge (AIHP 2018), who used related stochastic orders to study the frog model.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aihp1186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aihp1186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 4

摘要

研究了图上分支随机漫步的时空集的递归性和暂态性与子代分布的关系。在这里,我们说一个时空集$A$是循环的,如果它在分支随机漫步永远存在的情况下几乎可以肯定地被无限次访问,如果它几乎可以肯定地被无限次访问,那么$A$是短暂的。我们证明,如果$\mu$和$\nu$是均值为$\bar \mu < \bar \nu$的超临界后代分布,那么每一个关于后代分布循环的时空集$\mu$对于后代分布也是循环的$\nu$同样,每一个关于后代分布瞬态的时空集$\nu$对于后代分布也是瞬态的$\mu$。为了证明这一点,我们在概率测度上引入了一个新的阶数,我们称之为胚芽阶数,并更一般地证明,当胚芽阶中$\mu$小于$\nu$时,同样的结果成立。我们的工作灵感来自Johnson和Junge (AIHP 2018)的工作,他们使用相关的随机顺序来研究青蛙模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transience and recurrence of sets for branching random walk via non-standard stochastic orders
We study how the recurrence and transience of space-time sets for a branching random walk on a graph depends on the offspring distribution. Here, we say that a space-time set $A$ is recurrent if it is visited infinitely often almost surely on the event that the branching random walk survives forever, and say that $A$ is transient if it is visited at most finitely often almost surely. We prove that if $\mu$ and $\nu$ are supercritical offspring distributions with means $\bar \mu < \bar \nu$ then every space-time set that is recurrent with respect to the offspring distribution $\mu$ is also recurrent with respect to the offspring distribution $\nu$ and similarly that every space-time set that is transient with respect to the offspring distribution $\nu$ is also transient with respect to the offspring distribution $\mu$. To prove this, we introduce a new order on probability measures that we call the germ order and prove more generally that the same result holds whenever $\mu$ is smaller than $\nu$ in the germ order. Our work is inspired by the work of Johnson and Junge (AIHP 2018), who used related stochastic orders to study the frog model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信