{"title":"关于回溯选项与固定罢工","authors":"Y. Kitapbayev","doi":"10.1080/17442508.2013.837908","DOIUrl":null,"url":null,"abstract":"The lookback option with fixed strike in the case of finite horizon was examined with help of the solution to the optimal stopping problem for a three-dimensional Markov process in [P. Gapeev, Discounted optimal stopping for maxima in diffusion models with finite horizon, Electron. J. Probab. 11 (2006), pp. 1031–1048]. The purpose of this paper was to illustrate another derivation of the solution in [P. Gapeev, Discounted optimal stopping for maxima in diffusion models with finite horizon, Electron. J. Probab. 11 (2006), pp. 1031–1048]. The key idea is to use the Girsanov change-of-measure theorem which allows to reduce the three-dimensional optimal stopping problem to a two-dimensional optimal stopping problem with a scaling strike. This approach simplifies the discussion and expressions for the arbitrage-free price and the rational exercise boundary. We derive a closed-form expression for the value function of the two-dimensional problem in terms of the optimal stopping boundary and show that the optimal stopping boundary itself can be characterized as the unique solution to a nonlinear integral equation. Using these results we obtain the arbitrage-free price and the rational exercise boundary of the option.","PeriodicalId":49269,"journal":{"name":"Stochastics-An International Journal of Probability and Stochastic Processes","volume":"177 1","pages":"510 - 526"},"PeriodicalIF":0.8000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the lookback option with fixed strike\",\"authors\":\"Y. Kitapbayev\",\"doi\":\"10.1080/17442508.2013.837908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lookback option with fixed strike in the case of finite horizon was examined with help of the solution to the optimal stopping problem for a three-dimensional Markov process in [P. Gapeev, Discounted optimal stopping for maxima in diffusion models with finite horizon, Electron. J. Probab. 11 (2006), pp. 1031–1048]. The purpose of this paper was to illustrate another derivation of the solution in [P. Gapeev, Discounted optimal stopping for maxima in diffusion models with finite horizon, Electron. J. Probab. 11 (2006), pp. 1031–1048]. The key idea is to use the Girsanov change-of-measure theorem which allows to reduce the three-dimensional optimal stopping problem to a two-dimensional optimal stopping problem with a scaling strike. This approach simplifies the discussion and expressions for the arbitrage-free price and the rational exercise boundary. We derive a closed-form expression for the value function of the two-dimensional problem in terms of the optimal stopping boundary and show that the optimal stopping boundary itself can be characterized as the unique solution to a nonlinear integral equation. Using these results we obtain the arbitrage-free price and the rational exercise boundary of the option.\",\"PeriodicalId\":49269,\"journal\":{\"name\":\"Stochastics-An International Journal of Probability and Stochastic Processes\",\"volume\":\"177 1\",\"pages\":\"510 - 526\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics-An International Journal of Probability and Stochastic Processes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2013.837908\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics-An International Journal of Probability and Stochastic Processes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2013.837908","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The lookback option with fixed strike in the case of finite horizon was examined with help of the solution to the optimal stopping problem for a three-dimensional Markov process in [P. Gapeev, Discounted optimal stopping for maxima in diffusion models with finite horizon, Electron. J. Probab. 11 (2006), pp. 1031–1048]. The purpose of this paper was to illustrate another derivation of the solution in [P. Gapeev, Discounted optimal stopping for maxima in diffusion models with finite horizon, Electron. J. Probab. 11 (2006), pp. 1031–1048]. The key idea is to use the Girsanov change-of-measure theorem which allows to reduce the three-dimensional optimal stopping problem to a two-dimensional optimal stopping problem with a scaling strike. This approach simplifies the discussion and expressions for the arbitrage-free price and the rational exercise boundary. We derive a closed-form expression for the value function of the two-dimensional problem in terms of the optimal stopping boundary and show that the optimal stopping boundary itself can be characterized as the unique solution to a nonlinear integral equation. Using these results we obtain the arbitrage-free price and the rational exercise boundary of the option.
期刊介绍:
Stochastics: An International Journal of Probability and Stochastic Processes is a world-leading journal publishing research concerned with stochastic processes and their applications in the modelling, analysis and optimization of stochastic systems, i.e. processes characterized both by temporal or spatial evolution and by the presence of random effects.
Articles are published dealing with all aspects of stochastic systems analysis, characterization problems, stochastic modelling and identification, optimization, filtering and control and with related questions in the theory of stochastic processes. The journal also solicits papers dealing with significant applications of stochastic process theory to problems in engineering systems, the physical and life sciences, economics and other areas. Proposals for special issues in cutting-edge areas are welcome and should be directed to the Editor-in-Chief who will review accordingly.
In recent years there has been a growing interaction between current research in probability theory and problems in stochastic systems. The objective of Stochastics is to encourage this trend, promoting an awareness of the latest theoretical developments on the one hand and of mathematical problems arising in applications on the other.