铝合金多功能煤基层状双氢氧化物保护膜的研制

M. Iqbal, H. Asghar, M. Fedel
{"title":"铝合金多功能煤基层状双氢氧化物保护膜的研制","authors":"M. Iqbal, H. Asghar, M. Fedel","doi":"10.3390/cmd2040038","DOIUrl":null,"url":null,"abstract":"A protective CoAl-layered double hydroxide (LDH) thin film was developed directly on the aluminum substrate. Further, the low-surface-energy molecules (1H, 1H, 2H, 2H perfluorododecyl trichlorosilane) were incorporated inside the LDH network through an anion exchange mechanism to obtain a superhydrophobic CoAl-LDH surface. The developed films were characterized by scanning electron microscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR), and additional contact angle measurements were made to evaluate the superhydrophobicity of modified CoAl-LDHs against different solutions. The water contact angle (WCA) of the modified CoAl-LDH surface was observed to be about 153° and remained sufficiently stable after long-term immersion in NaCl solution. The effect of excessive ultrasonication on film structural variations and superhydrophobicity was also analyzed for outdoor applications. The high charge transfer resistance observed from the analysis of long-term electrochemical impedance spectroscopy (EIS) indicates the significant corrosion-resistance properties of the developed CoAl-LDHs. This research on protective CoAl-LDHs will bring insights into the understanding of new aspects of surface protection and implementation in many engineering applications.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of Multifunctional CoAl Based Layered Double Hydroxide Protective Film on Aluminum Alloy\",\"authors\":\"M. Iqbal, H. Asghar, M. Fedel\",\"doi\":\"10.3390/cmd2040038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A protective CoAl-layered double hydroxide (LDH) thin film was developed directly on the aluminum substrate. Further, the low-surface-energy molecules (1H, 1H, 2H, 2H perfluorododecyl trichlorosilane) were incorporated inside the LDH network through an anion exchange mechanism to obtain a superhydrophobic CoAl-LDH surface. The developed films were characterized by scanning electron microscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR), and additional contact angle measurements were made to evaluate the superhydrophobicity of modified CoAl-LDHs against different solutions. The water contact angle (WCA) of the modified CoAl-LDH surface was observed to be about 153° and remained sufficiently stable after long-term immersion in NaCl solution. The effect of excessive ultrasonication on film structural variations and superhydrophobicity was also analyzed for outdoor applications. The high charge transfer resistance observed from the analysis of long-term electrochemical impedance spectroscopy (EIS) indicates the significant corrosion-resistance properties of the developed CoAl-LDHs. This research on protective CoAl-LDHs will bring insights into the understanding of new aspects of surface protection and implementation in many engineering applications.\",\"PeriodicalId\":10693,\"journal\":{\"name\":\"Corrosion and Materials Degradation\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion and Materials Degradation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cmd2040038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion and Materials Degradation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cmd2040038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在铝衬底上直接制备了一层具有保护作用的煤层双氢氧化物(LDH)薄膜。此外,低表面能分子(1H, 1H, 2H, 2H全氟十二烷基三氯硅烷)通过阴离子交换机制被纳入LDH网络,获得超疏水的煤-LDH表面。采用扫描电子显微镜(SEM-EDS)、x射线衍射(XRD)和傅里叶变换红外光谱(FT-IR)对制备的膜进行了表征,并通过接触角测量来评价改性煤- ldhs对不同溶液的超疏水性。改性后的煤- ldh表面的水接触角(WCA)约为153°,在NaCl溶液中长期浸泡后仍保持足够的稳定性。在室外应用中,还分析了过度超声对膜结构变化和超疏水性的影响。长期电化学阻抗谱(EIS)分析表明,制备的煤-低密度聚合物具有良好的耐腐蚀性能。这项关于保护性煤- ldhs的研究将为许多工程应用中对表面保护和实施的新方面的理解带来见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Multifunctional CoAl Based Layered Double Hydroxide Protective Film on Aluminum Alloy
A protective CoAl-layered double hydroxide (LDH) thin film was developed directly on the aluminum substrate. Further, the low-surface-energy molecules (1H, 1H, 2H, 2H perfluorododecyl trichlorosilane) were incorporated inside the LDH network through an anion exchange mechanism to obtain a superhydrophobic CoAl-LDH surface. The developed films were characterized by scanning electron microscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR), and additional contact angle measurements were made to evaluate the superhydrophobicity of modified CoAl-LDHs against different solutions. The water contact angle (WCA) of the modified CoAl-LDH surface was observed to be about 153° and remained sufficiently stable after long-term immersion in NaCl solution. The effect of excessive ultrasonication on film structural variations and superhydrophobicity was also analyzed for outdoor applications. The high charge transfer resistance observed from the analysis of long-term electrochemical impedance spectroscopy (EIS) indicates the significant corrosion-resistance properties of the developed CoAl-LDHs. This research on protective CoAl-LDHs will bring insights into the understanding of new aspects of surface protection and implementation in many engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信