马尔可夫切换lsamvy过程的最优停止

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
M. Pemy
{"title":"马尔可夫切换lsamvy过程的最优停止","authors":"M. Pemy","doi":"10.1080/17442508.2013.797422","DOIUrl":null,"url":null,"abstract":"We consider a finite time horizon optimal stopping of a regime-switching Lévy process. We prove that the value function of the optimal stopping problem can be characterized as the unique viscosity solution of the associated Hamilton–Jacobi–Bellman variational inequalities.","PeriodicalId":49269,"journal":{"name":"Stochastics-An International Journal of Probability and Stochastic Processes","volume":"191 1","pages":"341 - 369"},"PeriodicalIF":0.8000,"publicationDate":"2014-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Optimal stopping of Markov switching Lévy processes\",\"authors\":\"M. Pemy\",\"doi\":\"10.1080/17442508.2013.797422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a finite time horizon optimal stopping of a regime-switching Lévy process. We prove that the value function of the optimal stopping problem can be characterized as the unique viscosity solution of the associated Hamilton–Jacobi–Bellman variational inequalities.\",\"PeriodicalId\":49269,\"journal\":{\"name\":\"Stochastics-An International Journal of Probability and Stochastic Processes\",\"volume\":\"191 1\",\"pages\":\"341 - 369\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2014-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics-An International Journal of Probability and Stochastic Processes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2013.797422\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics-An International Journal of Probability and Stochastic Processes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2013.797422","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 13

摘要

我们考虑一个有限的时间范围的最优停止状态切换lsamvy过程。证明了最优停止问题的值函数可以表征为相关Hamilton-Jacobi-Bellman变分不等式的唯一粘性解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal stopping of Markov switching Lévy processes
We consider a finite time horizon optimal stopping of a regime-switching Lévy process. We prove that the value function of the optimal stopping problem can be characterized as the unique viscosity solution of the associated Hamilton–Jacobi–Bellman variational inequalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
42
审稿时长
>12 weeks
期刊介绍: Stochastics: An International Journal of Probability and Stochastic Processes is a world-leading journal publishing research concerned with stochastic processes and their applications in the modelling, analysis and optimization of stochastic systems, i.e. processes characterized both by temporal or spatial evolution and by the presence of random effects. Articles are published dealing with all aspects of stochastic systems analysis, characterization problems, stochastic modelling and identification, optimization, filtering and control and with related questions in the theory of stochastic processes. The journal also solicits papers dealing with significant applications of stochastic process theory to problems in engineering systems, the physical and life sciences, economics and other areas. Proposals for special issues in cutting-edge areas are welcome and should be directed to the Editor-in-Chief who will review accordingly. In recent years there has been a growing interaction between current research in probability theory and problems in stochastic systems. The objective of Stochastics is to encourage this trend, promoting an awareness of the latest theoretical developments on the one hand and of mathematical problems arising in applications on the other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信