视觉艺术家中的小丑:

IF 0.2 0 ART
Art Documentation Pub Date : 2022-03-01 DOI:10.1086/719999
Michael Mandiberg, Danara Sarıoğlu
{"title":"视觉艺术家中的小丑:","authors":"Michael Mandiberg, Danara Sarıoğlu","doi":"10.1086/719999","DOIUrl":null,"url":null,"abstract":"This case study explores the challenges of defining a data set to analyze changes in Wikipedia’s gender gap for articles about visual art. Wikipedia and Wikidata each group content in data structures that produce overlapping and incomplete visual art datasets and include non-visual art data. To circumvent potentially biased editorial decisions about what to include or exclude, this case study describes the process of using a topic model algorithm that identifies a dataset by analyzing the words in each article and grouping the articles into topics.","PeriodicalId":43009,"journal":{"name":"Art Documentation","volume":"241 1","pages":"19 - 37"},"PeriodicalIF":0.2000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clowns in the Visual Artists:\",\"authors\":\"Michael Mandiberg, Danara Sarıoğlu\",\"doi\":\"10.1086/719999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This case study explores the challenges of defining a data set to analyze changes in Wikipedia’s gender gap for articles about visual art. Wikipedia and Wikidata each group content in data structures that produce overlapping and incomplete visual art datasets and include non-visual art data. To circumvent potentially biased editorial decisions about what to include or exclude, this case study describes the process of using a topic model algorithm that identifies a dataset by analyzing the words in each article and grouping the articles into topics.\",\"PeriodicalId\":43009,\"journal\":{\"name\":\"Art Documentation\",\"volume\":\"241 1\",\"pages\":\"19 - 37\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Documentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1086/719999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ART\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Documentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1086/719999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ART","Score":null,"Total":0}
引用次数: 0

摘要

这个案例研究探讨了定义一个数据集来分析维基百科关于视觉艺术文章的性别差异变化的挑战。维基百科和维基数据都将数据结构中的内容分组,这些数据结构产生重叠和不完整的视觉艺术数据集,并包括非视觉艺术数据。为了避免关于包含或排除哪些内容的编辑决策可能存在偏见,本案例研究描述了使用主题模型算法的过程,该算法通过分析每篇文章中的单词并将文章分组为主题来识别数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clowns in the Visual Artists:
This case study explores the challenges of defining a data set to analyze changes in Wikipedia’s gender gap for articles about visual art. Wikipedia and Wikidata each group content in data structures that produce overlapping and incomplete visual art datasets and include non-visual art data. To circumvent potentially biased editorial decisions about what to include or exclude, this case study describes the process of using a topic model algorithm that identifies a dataset by analyzing the words in each article and grouping the articles into topics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信